17 research outputs found

    A generated induced pluripotent stem cell (iPSC) line (CMGANTi005-A) of a Marfan syndrome patient with an FBN1 c.7754T\ua0>\ua0C (p.Ile2585Thr) variation

    No full text
    Marfan syndrome (MFS) is a connective tissue disorder with pleiotropic manifestations in the ocular, skeletal and cardiovascular system; and is typically cause by pathogenic variants in the fibrillin-1 (FBN1) gene. We report a generated induced pluripotent cell (iPSC) line of a MFS patient with an FBN1 c.7754T > C (p. Ile2585Thr) variant. The cell line was generated from peripheral blood mononuclear cells (PBMCs) and after reprogramming the line showed a no relevant copy number alterations, expression of pluripotency markers and was able to differentiate into three germ layers while carrying the original genotype

    Variable clinical expression of a Belgian TGFB3 founder variant suggests the presence of a genetic modifier

    No full text
    Abstract: Background: TGFB3 variants cause Loeys-Dietz syndrome type 5, a syndromic form of thoracic aortic aneurysm and dissection. The exact disease phenotype is hard to delineate because of few identified cases and highly variable clinical representation.Methodology: We provide the results of a haplotype analysis and a medical record review of clinical features of 27 individuals from 5 different families, originating from the Campine region in Flanders, carrying the NM_003239.5(TGFB3):c.787G>C p.(Asp263His) likely pathogenic variant, dbSNP:rs796051886, ClinVar:203492. The Asp263 residue is essential for integrin binding to the Arg-Gly-Asp (RGD) motif of the TGF beta 3-cytokine.Results: The haplotype analysis revealed a shared haplotype of minimum 1.92 Mb and maximum 4.14 Mb, suggesting a common founder originating >400 years ago. Variable clinical features included connective tissue manifestations, non-aneurysmal cardiovascular problems such as hypertrophic cardiomyopathy, bicuspid aortic valve, mitral valve disease, and septal defects. Remarkably, only in 4 out of the 27 variant-harboring individuals, significant aortic involvement was observed. In one family, a 31-year-old male presented with type A dissection. In another family, the male proband (65 years) underwent a Bentall procedure because of bicuspid aortic valve insufficiency combined with sinus of Valsalva of 50 mm, while an 80-year-old male relative had an aortic diameter of 43 mm. In a third family, the father of the proband (75 years) presented with ascending aortic aneurysm (44 mm).Conclusion: The low penetrance (15%) of aortic aneurysm/dissection suggests that haploinsufficiency alone by the TGFB3 variant may not result in aneurysm development but that additional factors are required to provoke the aneurysm phenotype

    Novel LOX variants in five families with aortic/arterial aneurysm and dissection with variable connective tissue findings

    No full text
    Thoracic aortic aneurysm and dissection (TAAD) is a major cause of cardiovascular morbidity and mortality. Loss-of-function variants in LOX, encoding the extracellular matrix crosslinking enzyme lysyl oxidase, have been reported to cause familial TAAD. Using a next-generation TAAD gene panel, we identified five additional probands carrying LOX variants, including two missense variants affecting highly conserved amino acids in the LOX catalytic domain and three truncating variants. Connective tissue manifestations are apparent in a substantial fraction of the variant carriers. Some LOX variant carriers presented with TAAD early in life, while others had normal aortic diameters at an advanced age. Finally, we identified the first patient with spontaneous coronary artery dissection carrying a LOX variant. In conclusion, our data demonstrate that loss-of-function LOX variants cause a spectrum of aortic and arterial aneurysmal disease, often combined with connective tissue findings

    Novel LOX Variants in Five Families with Aortic/Arterial Aneurysm and Dissection with Variable Connective Tissue Findings

    No full text
    Thoracic aortic aneurysm and dissection (TAAD) is a major cause of cardiovascular morbidity and mortality. Loss-of-function variants in LOX, encoding the extracellular matrix crosslinking enzyme lysyl oxidase, have been reported to cause familial TAAD. Using a next-generation TAAD gene panel, we identified five additional probands carrying LOX variants, including two missense variants affecting highly conserved amino acids in the LOX catalytic domain and three truncating variants. Connective tissue manifestations are apparent in a substantial fraction of the variant carriers. Some LOX variant carriers presented with TAAD early in life, while others had normal aortic diameters at an advanced age. Finally, we identified the first patient with spontaneous coronary artery dissection carrying a LOX variant. In conclusion, our data demonstrate that loss-of-function LOX variants cause a spectrum of aortic and arterial aneurysmal disease, often combined with connective tissue findings
    corecore