6 research outputs found

    An Immunofluorescence Assay to Detect Urediniospores of \u3ci\u3ePhakopsora pachyrhizi\u3c/i\u3e

    Get PDF
    An indirect immunofluorescence spore assay (IFSA) was developed to detect urediniospores of Phakopsora pachyrhizi, utilizing rabbit polyclonal antisera produced in response to intact nongerminated (SBR1A) or germinated (SBR2) urediniospores of P. pachyrhizi. Both antisera were specific to Phakopsora spp. and did not react with other common soybean pathogens or healthy soybean leaf tissue in enzyme-linked immunosorbent assay (ELISA). SBR1A and SBR2 bound to P. pachyrhizi and P. meibomiae urediniospores were detected with goat anti-rabbit Alexa Fluor 488-tagged antiserum using a Leica DM IRB epifluorescent microscope with an I3 blue filter (excitation 450 to 490 nm, emission 515 nm). The assay was performed on standard glass microscope slides; double-sided tape was superior to a thin coating of petroleum jelly both in retaining spores and in immunofluorescence. The IFSA was used to confirm the identity of P. pachyrhizi urediniospores captured on glass slides from passive air samplers from Georgia, Kentucky, and Ohio during 2006

    Lettuce Contamination and Survival of Salmonella Typhimurium and Listeria monocytogenes in Hydroponic Nutrient Film Technique Systems

    No full text
    Hydroponic vegetable production is increasing globally, but there is a lack of science-based recommendations to ensure their food safety. Specifically, there is limited evidence for establishing water management strategies. The purpose of this study was to determine the survival of Salmonella Typhimurium and Listeria monocytogenes in commercial nutrient flow technology (NFT) systems during the lifecycle of lettuce exposed to sporadic or extreme contamination. NFT systems were inoculated with Salmonella Typhimurium or Listeria monocytogenes, and nutrient solution, rockwool, roots, and lettuce leaves were collected over the lettuce production cycle for pathogen enumeration and detection. Both human pathogens persisted in the lettuce NFT growing system throughout the growth cycle of lettuce. Salmonella Typhimurium and L. monocytogenes accumulated in rockwool medium and on lettuce roots and were transferred to the leaves at quantifiable levels from the contaminated nutrient solution. In the nutrient solution, Salmonella concentration under sporadic and extreme conditions declined significantly 24 h after inoculation and again 7 days post-inoculation (p < 0.0001). Under extreme conditions, the concentration did not change significantly after 7 days, while under sporadic conditions, the concentration declined again 14 days post-inoculation in the nutrient solution collected from the reservoirs. L. monocytogenes populations in the nutrient solution fluctuated significantly over the 28-day growth cycle (p < 0.0001). Under extreme conditions, L. monocytogenes concentrations in the nutrient solution declined, while under sporadic conditions, the populations increased. The findings of this study, for the first time, describe human pathogen survival in commerical NFT systems and highlight the urgent need for novel approaches to mitigating the risks from nutrient solution contaminaiton in hydroponics

    An Immunofluorescence Assay to Detect Urediniospores of \u3ci\u3ePhakopsora pachyrhizi\u3c/i\u3e

    Get PDF
    An indirect immunofluorescence spore assay (IFSA) was developed to detect urediniospores of Phakopsora pachyrhizi, utilizing rabbit polyclonal antisera produced in response to intact nongerminated (SBR1A) or germinated (SBR2) urediniospores of P. pachyrhizi. Both antisera were specific to Phakopsora spp. and did not react with other common soybean pathogens or healthy soybean leaf tissue in enzyme-linked immunosorbent assay (ELISA). SBR1A and SBR2 bound to P. pachyrhizi and P. meibomiae urediniospores were detected with goat anti-rabbit Alexa Fluor 488-tagged antiserum using a Leica DM IRB epifluorescent microscope with an I3 blue filter (excitation 450 to 490 nm, emission 515 nm). The assay was performed on standard glass microscope slides; double-sided tape was superior to a thin coating of petroleum jelly both in retaining spores and in immunofluorescence. The IFSA was used to confirm the identity of P. pachyrhizi urediniospores captured on glass slides from passive air samplers from Georgia, Kentucky, and Ohio during 2006

    Gibberella xylarioides

    No full text

    Cultivating Food Safety Together: Insights About the Future of Produce Safety in the U.S. Controlled Environment Agriculture Sector

    No full text
    Controlled environment agriculture (CEA) is a rapidly growing sector that presents unique challenges and opportunities in ensuring food safety. This manuscript highlights critical gaps and needs to promote food safety in CEA systems as identified by stakeholders (n=47) at the Strategizing to Advance Future Extension and Research (S.A.F.E.R.) CEA conference held in April 2023 at The Ohio State University’s Ohio CEA Research Center. Feedback collected at the conference was analyzed using an emergent thematic analysis approach to determine key areas of focus. Research-based guidance is specific to the type of commodity, production system type, and size. Themes include the need for improved supply chain control, cleaning, and sanitization practices, pathogen preventive controls and mitigation methods and training and education. Discussions surrounding supply chain control underscored the significance of the need for approaches to mitigate foodborne pathogen contamination. Effective cleaning and sanitization practices are vital to maintaining a safe production environment, with considerations such as establishing standard operating procedures, accounting for hygienic equipment design, and managing the microbial communities within the system. Data analysis further highlights the need for risk assessments, validated pathogen detection methods, and evidence-based guidance in microbial reduction. In addition, training and education were identified as crucial in promoting a culture of food safety within CEA. The development of partnerships between industry, regulatory, and research institutions are needed to advance data-driven guidance and practices across the diverse range of CEA operations and deemed essential for addressing challenges and advancing food safety practices in CEA. Considering these factors, the CEA industry can enhance food safety practices, foster consumer trust, and support its long-term sustainability
    corecore