9 research outputs found

    Orally administered DTPA di-ethyl ester for decorporation of 241 Am in dogs: Assessment of safety and efficacy in an inhalation-contamination model

    Get PDF
    Currently two injectable products of diethylenetriaminepentaacetic acid (DTPA) are U.S. Food and Drug Administration (FDA) approved for decorporation of 241Am, however, an oral product is considered more amenable in a mass casualty situation. The diethyl ester of DTPA, named C2E2, is being developed as an oral drug for treatment of internal radionuclide contamination

    Pleiotropic effect of the proton pump inhibitor esomeprazole leading to suppression of lung inflammation and fibrosis

    Full text link
    Background: The beneficial outcome associated with the use of proton pump inhibitors (PPIs) in idiopathic pulmonary fibrosis (IPF) has been reported in retrospective studies. To date, no prospective study has been conducted to confirm these outcomes. In addition, the potential mechanism by which PPIs improve measures of lung function and/or transplant-free survival in IPF has not been elucidated. Methods: Here, we used biochemical, cell biological and preclinical studies to evaluate regulation of markers associated with inflammation and fibrosis. In our in vitro studies, we exposed primary lung fibroblasts, epithelial and endothelial cells to ionizing radiation or bleomycin; stimuli typically used to induce inflammation and fibrosis. In addition, we cultured lung fibroblasts from IPF patients and studied the effect of esomeprazole on collagen release. Our preclinical study tested efficacy of esomeprazole in a rat model of bleomycin-induced lung injury. Furthermore, we performed retrospective analysis of interstitial lung disease (ILD) databases to examine the effect of PPIs on transplant-free survival. Results: The cell culture studies revealed that esomeprazole controls inflammation by suppressing the expression of pro-inflammatory molecules including vascular cell adhesion molecule-1, inducible nitric oxide synthase, tumor necrosis factor-alpha (TNF-alpha) and interleukins (IL-1 beta and IL-6). The antioxidant effect is associated with strong induction of the stress-inducible cytoprotective protein heme oxygenase-1 (HO1) and the antifibrotic effect is associated with potent inhibition of fibroblast proliferation as well as downregulation of profibrotic proteins including receptors for transforming growth factor beta (TGF beta), fibronectin and matrix metalloproteinases (MMPs). Furthermore, esomeprazole showed robust effect in mitigating the inflammatory and fibrotic responses in a murine model of acute lung injury. Finally, retrospective analysis of two ILD databases was performed to assess the effect of PPIs on transplant-free survival in IPF patients. Intriguingly, this data demonstrated that IPF patients on PPIs had prolonged survival over controls (median survival of 3.4 vs 2 years). Conclusions: Overall, these data indicate the possibility that PPIs may have protective function in IPF by directly modulating the disease process and suggest that they may have other clinical utility in the treatment of extra-intestinal diseases characterized by inflammatory and/or fibrotic phases.Stanford School of Medicine [1049528-149- KAVFB]; Tobacco-Related Disease Research Program of the University of California [20FT-0090]; National Institutes of Health National Heart, Lung, and Blood Institute [5K01HL118683, P01HL114470]; Houston Methodist Research Institute [25150001]; Stanford SPARK Translational Research ProgramSCI(E)[email protected]

    Dosimetry of N[superscript 6]-Formyllysine Adducts Following [[superscript 13]C[superscript 2]H[subscript 2]]-Formaldehyde Exposures in Rats

    Get PDF
    With formaldehyde as the major source of endogenous N[superscript 6]-formyllysine protein adducts, we quantified endogenous and exogenous N[superscript 6]-formyllysine in the nasal epithelium of rats exposed by inhalation to 0.7, 2, 5.8, and 9.1 ppm [[superscript 13]C[superscript 2]H[subscript 2]]-formaldehyde using liquid chromatography-coupled tandem mass spectrometry. Exogenous N[superscript 6]-formyllysine was detected in the nasal epithelium, with concentration-dependent formation in total as well as fractionated (cytoplasmic, membrane, nuclear) proteins, but was not detected in the lung, liver, or bone marrow. Endogenous adducts dominated at all exposure conditions, with a 6 h 9.1 ppm formaldehyde exposure resulting in one-third of the total load of N[superscript 6]-formyllysine being derived from exogenous sources. The results parallel previous studies of formaldehyde-induced DNA adducts.David H. Koch Cancer Research FundNational Institutes of Health (U.S.) (National Institute of Environmental Health Sciences Grant ES016450)National Institutes of Health (U.S.) (National Institute of Environmental Health Sciences Grant ES005948)National Institutes of Health (U.S.) (National Institute of Environmental Health Sciences Grant ES010126)National Institutes of Health (U.S.) (National Institute of Environmental Health Sciences Grant ES002109)National Institutes of Health (U.S.) (National Cancer Institute (U.S.) Grant CA026731)National Institutes of Health (U.S.) (National Cancer Institute (U.S.) Grant CA103146)Texas. Commission of Environmental Qualit

    Formaldehyde and Epigenetic Alterations: MicroRNA Changes in the Nasal Epithelium of Nonhuman Primates

    No full text
    Background: Formaldehyde is an air pollutant present in both indoor and outdoor atmospheres. Because of its ubiquitous nature, it is imperative to understand the mechanisms underlying formaldehyde-induced toxicity and carcinogenicity. MicroRNAs (miRNAs) can influence disease caused by environmental exposures, yet miRNAs are understudied in relation to formaldehyde. Our previous investigation demonstrated that formaldehyde exposure in human lung cells caused disruptions in miRNA expression profiles in vitro. Objectives: Using an in vivo model, we set out to test the hypothesis that formaldehyde inhalation exposure significantly alters miRNA expression profiles within the nasal epithelium of nonhuman primates. Methods: Cynomolgus macaques were exposed by inhalation to approximately 0, 2, or 6 ppm formaldehyde for 6 hr/day for 2 consecutive days. Small RNAs were extracted from nasal samples and assessed for genome-wide miRNA expression levels. Transcriptional targets of formaldehyde-altered miRNAs were computationally predicted, analyzed at the systems level, and assessed using real-time reverse transcriptase polymerase chain reaction (RT-PCR). Results: Expression analysis revealed that 3 and 13 miRNAs were dysregulated in response to 2 and 6 ppm formaldehyde, respectively. Transcriptional targets of the miRNA with the greatest increase (miR-125b) and decrease (miR-142-3p) in expression were predicted and analyzed at the systems level. Enrichment was identified for miR-125b targeting genes involved in apoptosis signaling. The apoptosis-related targets were functionally tested using RT-PCR, where all targets showed decreased expression in formaldehyde-exposed samples. Conclusions: Formaldehyde exposure significantly disrupts miRNA expression profiles within the nasal epithelium, and these alterations likely influence apoptosis signaling
    corecore