4 research outputs found

    Quality evaluation of Alaska pollock (Theragra chalcogramma) roe by image analysis. Part I: Weight prediction

    Get PDF
    Roe is an important product of the Alaska pollock (Theragra chalcogramma) industry. About 31% of the value for all pollock products comes from roe, yet roe is 5% of the weight of the fish. Currently, the size (weight), color, and maturity of the roe are subjectively evaluated. The objective of this study was to develop methods to predict the weight of Alaska pollock roe based on its view area from a camera and to differentiate between single and double roes. One hundred and forty-two pollock roes were picked from a processing line in a Kodiak, AK plant. Each roe was weighed, placed in a light box equipped with a digital video camera, images were taken at two different angles from one side, then turned over and presented at two different angles again (four images for each roe). A reference square of known surface area was placed by the roe. The following equations were used to fit the view area (X) versus weight (Y) data: linear, power, and second-order polynomial. Error rates for the classification of roes by weight decreased significantly when weight prediction equations for single and double roes were developed separately. A turn angle method, a box method, and a modified box method were tested to differentiate single and double roes by image analysis. Machine vision can accurately determine the weight of pollock roe. Practical Application Abstract: An image analysis method to accurately determine if pollock roe is a single or a double was developed. Then view area versus weight correlations were found for single and double roes that reduced incorrect weight classification rates to half that of human graders. © 2012 Copyright Taylor and Francis Group, LLC

    Prediction of the weight of Alaskan Pollock using image analysis

    Get PDF
    Determining the size and quality attributes of fish by machine vision is gaining acceptance and increasing use in the seafood industry. Objectivity, speed, and record keeping are advantages in using this method. The objective of this work was to develop the mathematical correlations to predict the weight of whole Alaskan Pollock (Theragra chalcogramma) based on its view area from a camera. One hundred and sixty whole Pollock were obtained fresh, within 2 d after catch from a Kodiak, Alaska, processing plant. The fish were first weighed, then placed in a light box equipped with a Nikon D200 digital camera. A reference square of known surface area was placed by the fish. The obtained image was analyzed to calculate the view area of each fish. The following equations were used to fit the view area (X) compared with weight (Y) data: linear, power, and 2nd-order polynomial. The power fit (Y = A·XB) gave the highest R2 for the fit (0.99). The effect of fins and tail on the accuracy of the weight prediction using view area were evaluated. Removing fins and tails did not improve prediction accuracy. Machine vision can accurately predict the weight of whole Pollock. © 2010 Institute of Food Technologists®

    Determination of volume of alaska pollock (Theragra chalcogramma) by image analysis

    Get PDF
    The objective of this study was to develop two methods to predict the volume of whole Alaska pollock and to compare the results with the experimentally measured volumes. One hundred fifty-five whole pollock, obtained from a Kodiak processor, were individually immersed in a graduated cylinder equipped with an outflow tube to catch the displaced water as a result of immersion. The weight of the water was recorded. Then the fish were placed in a light box equipped with a digital video camera, and the side view and top view recorded (2 images for each fish). A reference square of known surface area was placed by the fish. A cubic spline method to predict volume by integration of cross-sectional area slices based on the top and side views and an empirical equation using dimensional (length L, width W, depth D) measurements at three locations of the fish image were developed. The R 2 value for the correlation between the L × W × D versus measured volume was 0.987. The best R 2 for the correlation of the predicted volume by the cubic spline method versus the measured volume was 0.99. Image analysis can be used reliably to predict the volume of whole Alaska pollock. © Taylor & Francis Group, LLC.University of Alaska Fairbank
    corecore