38 research outputs found

    A Reverse Logistics Network Model for Handling Returned Products

    Get PDF
    58827Due to the emergence of e-commerce and the proliferation of liberal return policies, product returns have become daily routines for many companies. Considering the significant impact of product returns on the company’s bottom line, a growing number of companies have attempted to streamline the reverse logistics process. Products are usually returned to initial collection points (ICPs) in small quantities and thus increase the unit shipping cost due to lack of freight discount opportunities. One way to address this issue is to aggregate the returned products into a larger shipment. However, such aggregation increases the holding time at the ICP, which in turn increases the inventory carrying costs. Considering this logistics dilemma, the main objectives of this research are to minimize the total cost by determining the optimal location and collection period of holding time of ICPs; determining the optimal location of a centralized return centre; transforming the nonlinear objective function of the proposed model formulation by Min et al. (2006a) into a linear form; and conducting a sensitivity analysis to the model solutions according to varying parameters such as shipping volume. Existing models and solution procedures are too complicated to solve real-world problems. Through a series of computational experiments, we discovered that the linearization model obtained the optimal solution at a fraction of the time used by the traditional nonlinear model and solution procedure, as well as the ability to handle up to 150 customers as compared to 30 in the conventional nonlinear model. As such, the proposed linear model is more suitable for actual industry applications than the existing models.S

    The Dynamic Relocation of Logistics Distribution Centers with Inventory

    No full text

    Exploiting sink mobility for maximizing sensor networks lifetime

    No full text
    This paper explores the idea of exploiting the mobility of data collection points (sinks) for the purpose of increasing the lifetime of a wireless sensor network with energy-constrained nodes. We give a novel linear programming formulation for the joint problems of determining the movement of the sink and the sojourn time at different points in the network that induce the maximum network lifetime. Differently from previous solutions, our objective function maximizes the overall network lifetime (here defined as the time till the first node "dies" because of energy depletion) rather than minimizing the energy consumption at the nodes. For wireless sensor networks with up to 256 nodes our model produces sink movement patterns and sojourn times leading to a network lifetime up to almost five times that obtained with a static sink. Simulation results are performed to determine the distribution of the residual energy at the nodes over time. These results confirm that energy consumption varies with the current sink location, being the nodes more drained those in the proximity of the sink. Furthermore, the proposed solution for computing the sink movement results in a fair balancing of the energy depletion among the network nodes
    corecore