37 research outputs found
Study of defects influence on chlorinated polyvinyl chloride pipes damage and analysis of their fracture
In several industrial applications, plastic, composites and ceramics replace a number of metallic structures such as copper, aluminum and steel. Most recently installed piping water and gas systems in the world are made of thermoplastic due to its advantages, for example, low cost, ease of fabrication and corrosion resistance. In this work, the chosen material is chlorinated polyvinyl chloride (CPVC); the best one used to transport cold and hot water beside simplicity of installation. Notwithstanding, the pipes in service are submitted to different loads, related to environmental, thermal and mechanical effects which procure to mechanisms of degradation. The aim of this article is to assess the effect of the defect on CPVC pipes, through a study of the defect criticality in the form of semi-elliptical, then the ability to predict defected pipes residual life. Therefore unexpected and sudden failure caused by pipes accelerated damage. Therefore, we performed burst tests on both pre-damaged CPVC pipes and virgin ones. To lead our work in this paper, interested in the damage modeling and the failure analysis of CPVC pipes, we adapted the model of unified theory static damage, originally developed in fatigue. We used burst pressure tests to identify the limits of three damage progression phases and, in turn, to calculate the critical life fraction at which these flaws become harmful. Furthermore, we identify the critical depth for the studied defect. These results and techniques enable industrialist s to anticipate this structures service life under these conditions after that set up a robust system of maintenance to ensure a reliable and safe functioning of the structure
Position Paper on Water, Energy, Food and Ecosystem (WEFE) Nexus and Sustainable development Goals (SDGs)
The EU and the international community is realising that the Water, Energy, Food and Ecosystem components are interlinked and require a joint planning in order to meet the daunting global challenges related to Water, Energy and Food security and maintaining the ecosystem health and in this way, reach the SDGs. If not dealt with, the world will not be able to meet the demand for water, energy and food in a not too far future and, in any case, in a not sustainable way. The strain on the ecosystems resulting from unsustainable single-sector planning will lead to increasing poverty, inequality and instability.
The Nexus approach is fully aligned with and supportive of the EU Consensus on Development. Key elements of the Consensus will require collaborative efforts across sectors in ways that can be supported/implemented by a Nexus approach. In this way, transparent and accountable decision-making, involving the civil society is key and common to the European Consensus on Development and the Nexus approach.
The Nexus approach will support the implementation of the SDG in particular SDG 2 (Food), SDG 6 (Water) and SDG 7 (Energy), but most SDGs have elements that link to food, water and energy in one or other way, and will benefit from a Nexus approach. The SDGs are designed to be cross-cutting and be implemented together, which is also reflected in a WEFE Nexus approach.
A Nexus approach offers a sustainable way of addressing the effects of Climate Change and increase resilience. The WEFE Nexus has in it the main drivers of climate change (water, energy and food security) and the main affected sectors (water and the environment). Decisions around policy, infrastructure, … developed based on the WEFE Nexus assessments will be suitable as elements of climate change mitigation and adaptation. In fact, it is difficult to imagine solutions to the climate change issue that are not built on a form of Nexus approach.
The Nexus approach is being implemented around the world, as examples in the literature demonstrate. These examples together with more examples from EU and member state development cooperation will help build experience that can be consolidated and become an important contribution to a Toolkit for WEFE Nexus Implementation. From the expert discussions, it appears that because of the novelty of the approach, a Toolkit will be an important element in getting the Nexus approach widely used. This should build on experiences from practical examples of NEXUS projects or similar inter-sectorial collaboration projects; and, there are already policy, regulation and practical experience to allow institutions and countries to start applying the Nexus concept.JRC.D.2-Water and Marine Resource
Oxidation of Natural and Synthetic Hormones by the Horseradish Peroxidase Enzyme in Wastewater
Steroid estrogens, including both natural estrogens (e.g., estrone – E1; 17β-estradiol – E2; and estriol – E3) and synthetic estrogens (e.g., 17α-ethinylestradiol – EE2), are known as endocrine-disrupting compounds. The objective of this research was to evaluate the feasibility of the enzymatic oxidation of estrogens and to optimize this process in municipal wastewater contaminated with steroid estrogens using horseradish peroxidase (HRP) and hydrogen peroxide. An initial HRP activity of 0.02 U ml−1 was sufficient to completely remove EE2 from the synthetic solution, although greater HRP doses (up to 0.06 U ml−1) were required to remove E1, E2 and E3. The optimal molar peroxide-to-substrate ratio was determined to be approximately 0.45. Based on the Michaelis–Menten kinetics, the HRP had an increasing reactivity with E1, E3, E2, and EE2, in increasing order. In real activated sludge process effluent, an HRP dose of 8–10 U ml−1 was required to completely remove all of the studied estrogens, while only 0.032 U ml−1 of HRP was necessary to treat synthetic water containing the same estrogen concentrations