18 research outputs found
Questioning the structure of Sr
The stable structures of argon clusters doped with a strontium cation were computationally determined using a many-body polarizable potential fitted to reproduce highly accurate electronic structure calculations at the coupled cluster level of theory. The basin-hopping global optimization method was employed to locate putative lowest energy structures of Sr+Arn clusters with n < 160, and the effects of zero-point energy corrections and of possible entropy-driven structural transitions were accounted for in the (quantum) harmonic approximation. The results suggest an overall icosahedral growth pattern over the investigated size range, with the strontium cation being generally twelvefold coordinated by argon atoms also arranged into an icosahedron. However, the strain between the first coordination shell and the remaining cluster is significant, with the cation not always residing at the center of the cluster despite being much more strongly bound. As a result, non-icosahedral coordination shells are also occasionally found with local decahedral or cubic arrangements. This structural diversity could explain the relative discrepancies with existing mass spectrometry abundances
Adiabatic and Diabatic Investigation of Numerous Electronic States for the Alkali Dimer FrNa
International audienc
Spectroscopic and structural investigation for the ground and excited states of CaNa+ molecular ion
International audienc
Theoretical study of the SrLi+ molecular ion: structural, electronic and dipolar properties
International audienc