2 research outputs found
Enzymatically Treated Spent Cellulose Sausage Casings as an Ingredient in Beef Emulsion Systems
The objective of this research was to incorporate an ingredient obtained from spent cellulose casings in beef emulsion modeling systems. The test ingredient (residual sausage casing [RSC]) was procured from cellulose sausage casings following thermal processing of the sausages. The casings were cleaned of contaminants before a combination of enzymatic hydrolysis and high-speed homogenization was conducted in an effort to improve the functional attributes of the cellulose casing residue (i.e., recycling/upcycling of the spent casings). The beef emulsion modeling systems used in this study consisted of 57.30% beef, 20% water, 15% olive oil, 6% of the combination of RSC and an all-purpose binder, 1.45% NaCl, 0.40% sodium tri-polyphosphate, 0.15% sodium nitrite cure, and 0.0035% sodium erythorbate. The overlying goal was to test the ability of the RSC ingredient as a partial or full replacement of binder ingredients in a beef emulsion system. Therefore, the beef emulsion model systems were prepared with 5 different levels of the RSC ingredient (0% RSC, 25% RSC, 50% RSC, 75% RSC, and 100% RSC). This study was independently replicated in its entirety 3 times (n = 3) in a completely randomized design, and data were analyzed using a generalized linear mixed statistical model. Emulsion samples were tested for proximate composition, cooking loss, emulsion stability, texture profile analysis, and instrumental color. Overall, technological properties and emulsion stability were lost as the level of the RSC ingredient increased, but low levels of the RSC ingredient (25% RSC) may help maintain acceptable levels of yield and emulsion stability while improving the sustainability of the sausage production system
Cooking loss, texture properties, and color of comminuted beef prepared with breadfruit (Artocarpus altilis) flour
Cooking loss, texture properties, and color of comminuted beef when prepared with breadfruit (Artocarpus altilis) flour or other flour sources was evaluated using 2 separate studies. Flour sources tested in these studies (against a negative control with no added flour) were breadfruit flour, soy flour, corn flour, wheat flour, and tapioca flour. Study 1: Finely minced, comminuted beef batters (extra lean beef targeted to 97% lean and 3% fat, salt, and ice/water) prepared with inclusion levels of 0, 1, 2, 3, 4, and 5% flour were evaluated for cooking loss and texture. Cooking loss was reduced (P < 0.05) in comminuted beef prepared with breadfruit flour compared with those not prepared with flour and cooking loss decreased as breadfruit flour inclusion level increased (Linear P < 0.01). Hardness was not different (P = 0.49) in comminuted beef prepared with breadfruit flour compared with soy flour, and was much less (P < 0.01) compared with the 3 other flour sources at each inclusion level. Study 2: Comminuted beef (lean beef targeted to 90% lean and 10% fat, salt, and ice/water) with inclusion levels of 0, 2.5, and 5% flour were formed into patties and were evaluated for color over a simulated retail display period. Redness values (a*) of comminuted beef prepared with breadfruit flour were the greatest (P < 0.05) during the 7-d simulated retail display compared with all other treatments, including control samples with no flour. Overall, the results indicated that breadfruit flour could be effectively used as an ingredient in comminuted beef to produce similar texture as observed with soy flour, while actually improving redness values beyond that of other flour sources