19 research outputs found

    The Clinicopathologic and Prognostic Significance of Programmed Cell Death Ligand 1 (PD-L1) Expression in Patients With Prostate Cancer: A Systematic Review and Meta-Analysis

    Get PDF
    Background: Programmed cell death ligand 1 (PD-L1) expression has been shown to correlate with poor prognosis in diverse human cancers. However, limited data exist on the prognostic and clinicopathologic significance of PD-L1 expression in prostate cancers (PCa), and the curative effect of anti-PD-1/PD-L1 therapy remains controversial. In this systematic review and meta-analysis, we aimed to evaluate the prognostic and clinicopathologic value of PD-L1 in PCa.Methods: We performed a systematic literature search in the PubMed, Cochrane Library, EMBASE, Web of Science, and SCOPUS databases up to July 21st, 2018. Pooled prevalence of PD-L1 in PCa was calculated using Freeman-Tukey double arcsine transformation by R software version 3.5.0. The data from the studies were examined by a meta-analysis using Review Manager software 5.3 to calculate pooled hazard ratios (HRs) and pooled odds ratios (ORs) with 95% confidence intervals (CIs) to estimate the prognostic and clinicopathologic value of PD-L1 in PCa. Heterogeneity was tested by the Chi-squared test and I2 statistic.Results: Five studies with 2,272 patients were included in this meta-analysis. The pooled prevalence of PD-L1 in PCa was 35% (95% CI 0.32 to 0.37). Both PD-L1 expression (HR = 1.78; 95% CI 1.39 to 2.27; p < 0.00001) and PD-L1 DNA methylation (HR = 2.23; 95% CI 1.51 to 3.29; p < 0.0001) were significantly associated with poor biochemical recurrence-free survival (BCR-FS). PD-L1 tended to have high expression levels in high Gleason score cases (OR = 1.54; 95% CI, 1.17 to 2.03; P = 0.002) and androgen receptor-positive cases (OR = 2.42, 95% CI 1.31 to 4.50; P = 0.005). However, PD-L1 had relatively weak correlation with age, pathologic stage, lymph node metastasis and preoperative PSA level.Conclusions: This meta-analysis confirms the negative prognostic significance of PD-L1 expression and mPD-L1 in PCa patients. Additionally, PD-L1 has a statistically significant correlation with Gleason score and androgen receptor status, while the correlations with age, pathologic stage, lymph node metastasis, and preoperative PSA level were not statistically significant. However, the number of included studies is too small to make the conclusions more convincing, so more retrospective large-cohort studies are expected for the further confirmation of these findings

    Artificial liver research output and citations from 2004 to 2017: a bibliometric analysis

    Get PDF
    Background Researches on artificial livers greatly contribute to the clinical treatments for liver failure. This study aimed to evaluate the research output of artificial livers and citations from 2004 to 2017 through a bibliometric analysis. Methods A list of included articles on artificial livers were generated after a comprehensive search of the Web of Science Core Collection (from 2004 to 2017) with the following basic information: number of publications, citations, publication year, country of origin, authors and authorship, funding source, journals, institutions, keywords, and research area. Results A total of 968 included articles ranged from 47 citations to 394 citations with a fluctuation. The publications were distributed in 12 countries, led by China (n = 212) and the US (n = 207). There were strong correlations of the number of citations with authors (r2 = 0.133, p < 0.001), and countries (r2 = 0.275, p < 0.001), while no correlations of the number of citations with the years since publication (r2 = 0.016, p = 0.216), and funding (r2 < 0.001, p = 0.770) were identified. Keyword analysis demonstrated that with the specific change of “acute liver failure,” decrease in “bioartificial livers” and “hepatocyte,” and increase in “tissue engineering” were identified. The top 53 cited keyword and keyword plus (including some duplicates counts) were identified, led by bioartificial liver (405 citations) and hepatocyte (248 citations). The top 50 cited keywords bursts were mainly “Blood” (2004–2008), “hepatocyte like cell” (2008–2015), and “tissue engineering” (2014–2017). All keywords could be classified into four categories: bioartificial livers (57.40%), blood purification (25.00%), clinical (14.81%), and other artificial organs (2.78%). Discussion This study shows the process and tendency of artificial liver research with a comprehensive analysis on artificial livers. However, although it seems that the future of artificial livers seems brighter for hepatocyte transplantation, the systems of artificial livers now are inclined on focusing on blood purification, plasma exchange, etc

    Multiplex digital PCR: a superior technique to qPCR for the simultaneous detection of duck Tembusu virus, duck circovirus, and new duck reovirus

    Get PDF
    Duck Tembusu virus (DTMUV), duck circovirus (DuCV), and new duck reovirus (NDRV) have seriously hindered the development of the poultry industry in China. To detect the three pathogens simultaneously, a multiplex digital PCR (dPCR) was developed and compared with multiplex qPCR in this study. The multiplex dPCR was able to specifically detect DTMUV, DuCV, and NDRV but not amplify Muscovy duck reovirus (MDRV), Muscovy duck parvovirus (MDPV), goose parvovirus (GPV), H4 avian influenza virus (H4 AIV), H6 avian influenza virus (H6 AIV), and Newcastle disease virus (NDV). The standard curves showed excellent linearity in multiplex dPCR and qPCR and were positively correlated. The sensitivity results showed that the lowest detection limit of multiplex dPCR was 1.3 copies/μL, which was 10 times higher than that of multiplex qPCR. The reproducibility results showed that the intra- and interassay coefficients of variation were 0.06–1.94%. A total of 173 clinical samples were tested to assess the usefulness of the method; the positive detection rates for DTMUV, DuCV, and NDRV were 18.5, 29.5, and 14.5%, respectively, which were approximately 4% higher than those of multiplex qPCR, and the kappa values for the clinical detection results of multiplex dPCR and qPCR were 0.85, 0.89, and 0.86, indicating that the two methods were in excellent agreement

    Separase Phosphosite Mutation Leads to Genome Instability and Primordial Germ Cell Depletion during Oogenesis

    Get PDF
    To ensure equal chromosome segregation and the stability of the genome during cell division, Separase is strictly regulated primarily by Securin binding and inhibitory phosphorylation. By generating a mouse model that contained a mutation to the inhibitory phosphosite of Separase, we demonstrated that mice of both sexes are infertile. We showed that Separase deregulation leads to chromosome mis-segregation, genome instability, and eventually apoptosis of primordial germ cells (PGCs) during embryonic oogenesis. Although the PGCs of mutant male mice were completely depleted, a population of PGCs from mutant females survived Separase deregulation. The surviving PGCs completed oogenesis but produced deficient initial follicles. These results indicate a sexual dimorphism effect on PGCs from Separase deregulation, which may be correlated with a gender-specific discrepancy of Securin. Our results reveal that Separase phospho-regulation is critical for genome stability in oogenesis. Furthermore, we provided the first evidence of a pre-zygotic mitotic chromosome segregation error resulting from Separase deregulation, whose sex-specific differences may be a reason for the sexual dimorphism of aneuploidy in gametogenesis

    Oxidatively stressed extracellular microenvironment drives fibroblast activation and kidney fibrosis

    No full text
    Kidney fibrosis is associated with tubular injury, oxidative stress and activation of interstitial fibroblasts. However, whether these events are somehow connected is poorly understood. In this study, we show that glutathione peroxidase-3 (GPX3) depletion in renal tubular epithelium after kidney injury plays a central role in orchestrating an oxidatively stressed extracellular microenvironment, which drives interstitial fibroblast activation and proliferation. Through transcriptional profiling by RNA-sequencing, we found that the expression of GPX3 was down-regulated in various models of chronic kidney disease (CKD), which was correlated with induction of nicotinamide adenine dinucleotide phosphate (NAPDH) oxidase-4 (NOX4). By using decellularized extracellular matrix (ECM) scaffold, we demonstrated that GPX3-depleted extracellular microenvironment spontaneously induced NOX4 expression and reactive oxygen species (ROS) production in renal fibroblasts and triggered their activation and proliferation. Activation of NOX4 by advanced oxidation protein products (AOPPs) mimicked the loss of GPX3, increased the production of ROS, stimulated fibroblast activation and proliferation, and activated protein kinase C-α (PKCα)/mitogen-activated protein kinase (MAPK)/signal transducer and activator of transcription 3 (STAT3) signaling. Silencing NOX4 or inhibition of MAPK with small molecule inhibitors hampered fibroblast activation and proliferation. In mouse model of CKD, knockdown of NOX4 repressed renal fibroblast activation and proliferation and alleviated kidney fibrosis. These results indicate that loss of GPX3 orchestrates an oxidatively stressed extracellular microenvironment, which promotes fibroblast activation and proliferation through a cascade of signal transduction. Our studies underscore the crucial role of extracellular microenvironment in driving fibroblast activation and kidney fibrosis

    Preimplantation Mouse Embryos Depend on Inhibitory Phosphorylation of Separase To Prevent Chromosome Missegregationâ–ż

    No full text
    Separase is a critical protease that catalyzes the cleavage of sister chromatid cohesins to allow the separation of sister chromatids in the anaphase. Its activity must be inhibited prior to the onset of the anaphase. Two inhibitory mechanisms exist in vertebrates that block the protease activity. One mechanism is through binding and inhibition by securin, and another is phosphorylation on Ser1126 (in humans [Ser1121 in mice]). These two mechanisms are largely redundant. However, phosphorylation on Ser1121 is critical for the prevention of premature sister separation in embryonic germ cells. As a result, Ser1121-to-Ala mutation leads to depletion of germ cells in development and subsequently to infertility in mice. Here, we report that the same mutation also causes embryogenesis failure between the 8- and 16-cell stages in mice. Our results indicate a critical role of separase phosphorylation in germ cell development as well as in early embryogenesis. Thus, deregulation of separase may be a significant contributor to infertility in humans

    Celsr3 and Fzd3 Organize a Pioneer Neuron Scaffold to Steer Growing Thalamocortical Axons.

    No full text
    Celsr3 and Fzd3 regulate the development of reciprocal thalamocortical projections independently of their expression in cortical or thalamic neurons. To understand this cell non autonomous mechanism further, we tested whether Celsr3 and Fzd3 could act via Isl1-positive guidepost cells. Isl1-positive cells appear in the forebrain at embryonic day (E) 9.5-E10.5 and, from E12.5, they form 2 contingents in ventral telencephalon and prethalamus. In control mice, corticothalamic axons run in the ventral telencephalic corridor in close contact with Isl1-positive cells. When Celsr3 or Fzd3 is inactivated in Isl1-expressing cells, corticofugal fibers stall and loop in the ventral telencephalic corridor of high Isl1 expression, and thalamic axons fail to cross the diencephalon-telencephalon junction (DTJ). At E12.5, before thalamic and cortical axons emerge, pioneer projections from Isl1-positive cells cross the DTJ from both sides in control but not mutant embryos. These early projections appear to act like a bridge to guide later growing thalamic axons through the DTJ. Our data suggest that Celsr3 and Fzd3 orchestrate the formation of a scaffold of pioneer neurons and their axons. This scaffold extends from prethalamus to ventral telencephalon and subcortex, and steers reciprocal corticothalamic fibers

    Luminescent Aggregated Copper Nanoclusters Nanoswitch Controlled by Hydrophobic Interaction for Real-Time Monitoring of Acid Phosphatase Activity

    No full text
    A reversible luminescence nanoswitch through competitive hydrophobic interaction among copper nanoclusters, <i>p</i>-nitrophenol and α-cyclodextrin is established, and a reliable real-time luminescent assay for acid phosphatase (ACP) activity is developed on the basis of this luminescence nanoswitch. Stable and intensely luminescent copper nanoclusters (CuNCs) were synthesized via a green one-pot approach. The hydrophobic nature of CuNCs aggregate surface is identified, and further used to drive the adsorption of <i>p</i>-nitrophenol on the surface of CuNCs aggregate due to their hydrophobic interaction. This close contact switches off the luminescence of CuNCs aggregate through static quenching mechanism. However, the introduction of α-cyclodextrin switches on the luminescence since stronger host–guest interaction between α-cyclodextrin and <i>p</i>-nitrophenol causes the removal of <i>p</i>-nitrophenol from the surface of CuNCs. This nanoswitch in response to external stimulus <i>p</i>-nitrophenol or α-cyclodextrin can be run in a reversible way. Luminescence quenching by <i>p</i>-nitrophenol is further utilized to develop ACP assay using <i>p</i>-nitrophenyl phosphate ester as the substrate. Quantitative measurement of ACP level with a low detection limit of 1.3 U/L was achieved based on this specific detection strategy. This work reports a luminescence nanoswitch mediated by hydrophobic interaction, and provides a sensitive detection method for ACP level which is capable for practical detection in human serum and seminal plasma
    corecore