189 research outputs found

    Polarized Spectroscopy Studies of Single Molecules of Porphycenes

    Get PDF
    Using ambient atmosphere instead of pure nitrogen environment enabled efficient recording of room temperature fluorescence from single molecules of porphycenes, chromophores with a high triplet formation efficiency. Double hydrogen transfer between two chemically identical trans tautomers has been demonstrated for parent porphycene and three alkyl derivatives by the analysis of spatial patterns of the emission obtained after raster scanning the sample excited with an appropriately polarized laser beam. Because of tautomerization, fluorescence in porphycenes is due to two nearly orthogonal transition dipole moments. This property allows the spatial orientation of the single molecule chromophores to be determined using radially and azimuthally polarized laser beams as excitation sources

    Highly efficient, tunable single photon source based on single molecules

    Get PDF
    The authors studied spatially isolated terrylene molecules immobilized in a quasiplanar optical λ/2-microresonator using confocal microscopy and spectroscopy at variable temperatures. At T = 1.8 K, they observed individual molecules relaxing into microresonator-allowed vibronic levels of their electronic ground state by emission of single fluorescence photons. Coupling the purely electronic transition of embedded molecules to the longitudinal photonic mode of the microresonator resulted in an ultimate spectral narrowing and an increased collection efficiency of the emitted single photon wave trains

    Electrodynamic coupling of electric dipole emitters to a fluctuating mode density within a nano-cavity

    Full text link
    We investigate the impact of rotational diffusion on the electrodynamic coupling of fluorescent dye molecules (oscillating electric dipoles) to a tunable planar metallic nanocavity. Fast rotational diffusion of the molecules leads to a rapidly fluctuating mode density of the electromagnetic field along the molecules' dipole axis, which significantly changes their coupling to the field as compared to the opposite limit of fixed dipole orientation. We derive a theoretical treatment of the problem and present experimental results for rhodamine 6G molecules in cavities filled with low and high viscosity liquids. The derived theory and presented experimental method is a powerful tool for determining absolute quantum yield values of fluorescence.Comment: 5 pages, 3 figures, accepted by Physical Review Letter

    Simultaneous Spectroscopic And Topographic Near-field Imaging Of Tio2 Single Surface States And Interfacial Electronic Coupling

    Get PDF
    We have probed single surface states and the involved interfacial charge transfer coupling on the TiO2 surface using confocal as well as tip-enhanced near-field topographic-spectroscopic imaging analysis on a niobium-doped rutile TiO2(110) surface. The confocal images excited with a radially polarized donut mode render ring-shaped excitation patterns typical for quantum systems with two perpendicular transition dipole moments. The tip-enhanced near-field optical images of single surface states are visualized by the strong exciton plasmon-polariton coupling localized at the subdomain boundaries with a spatial resolution of similar to 15 nm (far beyond the optical diffraction limit). We suggest that the abundant surface states in the doped TiO2 generate excitons under laser excitation which are strongly coupled to the surface plasmon polaritons of the Au tip. Moreover, the interfacial electronic molecule-substrate coupling has been characterized by probing the molecule-perturbed surface states distribution and the associated specific Raman vibrational modes. The imaging and characterization of the surface states and their distributions on TiO2 surfaces at nanoscale are critically relevant to a deep understanding of interfacial electron transfer dynamics and energetics involving in solar energy conversion, photocatalysis, and mechanistic understanding of surface-enhanced Raman scattering spectroscopy

    Electronic Structure of Colloidal 2H-MoS2 Mono and Bilayers Determined by Spectroelectrochemistry

    Get PDF
    The electronic structure of mono and bilayers of colloidal 2H-MoS2 nanosheets synthesized by wet-chemistry using potential-modulated absorption spectroscopy (EMAS), differential pulse voltammetry, and electrochemical gating measurements is investigated. The energetic positions of the conduction and valence band edges of the direct and indirect bandgap are reported and observe strong bandgap renormalization effects, charge screening of the exciton, as well as intrinsic n-doping of the as-synthesized material. Two distinct transitions in the spectral regime associated with the C exciton are found, which overlap into a broad signal upon filling the conduction band. In contrast to oxidation, the reduction of the nanosheets is largely reversible, enabling potential applications for reductive electrocatalysis. This work demonstrates that EMAS is a highly sensitive tool for determining the electronic structure of thin films with a few nanometer thicknesses and that colloidal chemistry affords high-quality transition metal dichalcogenide nanosheets with an electronic structure comparable to that of exfoliated samples
    corecore