13 research outputs found

    Development of a method to determine the bioaccumulation of manufactured nanomaterials in filtering organisms (Bivalvia). Final Report

    No full text
    Entwicklung einer Methode zur Bestimmung der Bioakkumulation von synthetischen Nanomaterialien in filtrierenden Organismen (Bivalvia) Immer größer werdende Mengen an synthetischen Nanomaterialien (MNMs) werden für den industriellen Einsatz produziert und können während der Produktion, dem Einsatz der Produkte, sowie bei deren Entsorgung in die Umwelt gelangen. MNMs mit hohen Produktionsvolumina unterliegen einer Bioakkumulationsbewertung im Rahmen der EU REACH Verordnung, um potentielle Umweltbelastungen abschätzen zu können. Die hierbei für die Chemikalienbewertung klassischerweise verwendeten Methoden, etwa Durchflussstudien mit Fischen gemäß OECD TG 305, sind für das Testen von MNMs in aquatischen Medien jedoch nur bedingt geeignet. So neigen die meisten MNMs dazu, in aquatischen Systemen nur metastabile Suspensionen zu bilden und direkt nach dem Eintreten in das Medium oder im zeitlichen Verlauf zu sedimentieren. Eine konstante homogene Exposition im Testsystem wird somit stark erschwert. Für Corbicula fluminea, eine weit verbreitete Süßwassermuschel, wurde bereits in früheren Studien gezeigt, dass sie MNMs aus der Wasserphase durch Filtration aufnehmen kann. Im Rahmen dieses Projekts wurde die Eignung von C. fluminea für Bioakkumulationsstudien mit MNMs geprüft. Hierzu wurde ein neues Durchflusssystem entwickelt, welches eine konstante und homogene Exposition von MNMs ermöglicht. Zur Überprüfung wurden synthetische Nanomaterialien gewählt, welche jeweils MNMs mit bestimmten Eigenschaften repräsentieren. Das Silbernanopartikel NM 300K (Ag NP) wurde als Repräsentant der Gruppe der gutdispergierbaren und ionenfreisetzenden MNMs getestet und mit AgNO3 als nichtnanopartikuläre Form desselben Elements verglichen. NM 105, ein Titandioxid NP, wurde für die Gruppe der nicht ionenfreisetzenden MNMs getestet. Für die Gruppe der MNMs, welche auf organischen Polymeren basieren, wurde das Polystyrol NP Fluoro-Max™ getestet, welches mit einem Fluoreszenzfarbstoff markiert war. Somit konnte die Aufnahme und Verteilung des NPsim Weichkörper der Muscheln u.a. mittels Fluoreszenzmikroskop untersucht werden. Für die Ag und TiO2 Behandlungen konnten nach Messung der Gewebekonzentrationen BAF bzw. BCFWerte im Konzentrationsgleichgewicht ermittelt werden. BAFss Werte von 31 und 128 für die beiden NM 300K Konzentrationen (0,624 und 6,177 μg Ag/L) und 6150 und 9022 für die beiden NM 105 Konzentrationen (0,099 und 0,589 μg TiO2/L) zeigten, dass BAFss Werte für die untersuchten MNMs abhängig von der jeweiligen Expositionskonzentration sind. Für die AgNO3Behandlung wurden ebenso konzentrationsabhängige BCFss Werte von 31 und 711 für die höhere und niedrigere Konzentrationen ermittelt. Die Kinetik der gemessenen Partikelkonzentrationen in den Muschelgeweben (sp-ICP-MS) wie auch die ermittelten Distributionsfaktoren für einzelne Kompartimente lieferten Hinweise, dass die untersuchten MNMs zwar aufgenommen, aber nicht inkorporiert wurden

    Silver and gold nanoparticle separation using asymmetrical flow-field flow fractionation: Influence of run conditions and of particle and membrane charges

    No full text
    Flow-Field Flow Fractionation (Flow-FFF), coupled with online detection systems is one of the most promising tools available for the separation and quantification of engineered nanoparticles (ENPs) incomplex matrices. To correctly relate the retention of nanoparticles in the Flow-FFF-channel to the particle size, ideal separation conditions must be met. This requires optimization of the parameters that influence the separation behavior. The aim of this study was therefore to systematically investigate and evaluate the influence of parameters such as the carrier liquid, the cross flow, and the membrane material,on the separation behavior of two metallic ENPs. For this purpose the retention, recovery, and separation efficiency of sterically stabilized silver nanoparticles (AgNPs) and electrostatically stabilized gold nanoparticles (AuNPs), which represent two materials widely used in investigations on environmental fate and ecotoxicology, were investigated against a parameter matrix of three different cross-flow densities, four representative carrier solutions, and two membrane materials. The use of a complex mixture of buffers, ionic and non-ionic surfactants (FL-70 solution) together with a medium cross-flow density provided an acceptable compromise in peak quality and recovery for both types of ENPs. However, these separation conditions do not represent a perfect match for both particle types at the same time (maximized recovery at maximized retention). It could be shown that the behavior of particles within Flow-FFF channels cannot be predicted orexplained purely in terms of electrostatic interactions. Particles were irreversibly lost under conditions where the measured zeta potentials suggested that there should have been sufficient electrostatic repulsion to ensure stabilization of the particles in the Flow-FFF channel resulting in good recoveries. The wide variations that we observed in ENP behavior under different conditions, together with the different behavior that has been reported in published literature for the same NPs under similar conditions,indicate a need for improvement in the membrane materials used for Flow-FFF analysis of NPs. This research has shown that careful adjustment of separation conditions can result in acceptable, but not ideal, separation conditions for two fundamentally different stabilized materials, and that it may not be possible to separate a set of different particles under ideal conditions for each particle type. This therefore needs to be taking into account in method development and when interpreting FFF results from complex samples

    Leaching of Titanium Dioxide Nanomaterials from Agricultural Soil Amended with Sewage Sludge Incineration Ash: Comparison of a Pilot Scale Simulation with Standard Laboratory Column Elution Experiments

    No full text
    Nanoscale titanium dioxide (nTiO2 (Hombikat UV 100 WP)) was applied to sewage sludge that was incinerated in a large-scale waste treatment plant. The incineration ash produced was applied to soil as fertilizer at a realistic rate of 5% and investigated in pilot plant simulations regarding its leaching behavior for nTiO2. In parallel, the applied soil material was subject to standard column leaching (DIN 19528) in order to test the suitability of the standard to predict the leaching of nanoscale contaminants from treated soil material. Relative to the reference material (similar composition but without nTiO2 application before incineration) the test material had a total TiO2 concentration, increased by a factor of two or 3.8 g/kg, respectively. In contrast, the TiO2 concentration in the respective leachates of the simulation experiment differed by a factor of around 25 (maximum 91.24 mg), indicating that the added nTiO2 might be significantly mobilisable. Nanoparticle specific analysis of the leachates (spICP-MS) confirmed this finding. In the standard column elution experiment the released amount of TiO2 in the percolates between test and reference material differed by a factor of 4 to 6. This was also confirmed for the nTiO2 concentrations in the percolates. Results demonstrate that the standard column leaching, developed and validated for leaching prediction of dissolved contaminants, might be also capable to indicate increased mobility of nTiO2 in soil materials. However, experiments with further soils are needed to verify those findings

    Biodegradation testing of volatile hydrophobic chemicals in water-sediment systems - Experimental developments and challenges

    Get PDF
    Degradation data are crucial for the persistence assessment of chemicals and they are generated using standard OECD guidelines. The OECD 308 describes a simulation biodegradation test of chemicals in water-sediment systems. This guideline is not applicable for testing highly volatile chemicals and recommends a closed biometer test setup for testing slightly volatile chemicals. However, proper details on system geometries, construction and monitoring of aerobic conditions are not provided. The choice of system geometry and sediment:water ratio influences the partitioning of test chemicals between different compartments (water, sediment and headspace) and can therefore affect their degradation. The guideline recommends the addition of test chemical via aqueous solutions, which however is not possible for hydrophobic volatile chemicals due to their volatilization losses and low solubility. Thus, the use of a co-solvent is necessary for the application of such chemicals but its effects in a closed setup has not been studied. We recently developed an improved closed test setup for testing volatile chemicals in soil. The objective was to adapt this improved test setup to conduct OECD 308 tests using 14C labelled chemicals with different volatilities. Using the adapted test setup it was possible to obtain a complete mass balance even for n-decane and tetralin having the highest Henry's constants of the tested chemicals. However, the use of co-solvent affected the oxygen levels, which in turn affected microbial activity and likely also the degradation of test chemicals. Therefore, the adapted test setup needs further developments for the testing of volatile hydrophobic chemicals

    Silver nanoparticles in sewage treatment plant effluents: Chronic effects and accumulation of silver in the freshwater amphipod Hyalella azteca

    No full text
    Background Increasing amounts of engineered nanoparticles (NPs) in wastewater can reach the aquatic environment by passing through the sewage treatment plant (STP). NPs can induce ecotoxicological effects due to their specific chemical properties. However, their bioavailability and toxicity are potentially influenced by transformation processes caused by substances present in the STP, e.g., humic acids or sulfides. Due to the lack of a test system allowing to test NPs under realistic environmental conditions, we coupled two existing test systems, the activated sludge simulation test (OECD TG 303A 2001) and the chronic exposure test with the freshwater amphipod Hyalella azteca (Environment Canada 2013), to gain a test scenario that allows to consider the altered behavior and fate of NPs induced by the STP process. This should improve the environmental realism of the chronic exposure test with Hyalella. In the first study, we tested the STP effluent containing AgNPs. In the second and third study, tap water and control STP effluent were spiked with AgNPs and used as test media. Results The chronic exposure studies with the freshwater amphipod H. azteca showed that the investigated AgNPs lose most of their toxicity while passing through the STP. Over all studies with total Ag concentrations ranging from 0.85 to 68.70 µg/L, significant effects of the AgNPs were only observed in the survival of test animals exposed to tap water containing the highest Ag concentration (62.59 µg/L). Accumulation of silver in the body of test animals was clearly dependent on the pretreatment of the AgNPs. Silver ions (Ag+) released from AgNPs are supposed to be the major pathway leading to body burden following exposure to test media containing AgNPs. Conclusion The coupled test system is suitable for testing substances that can reach the environment via the STP effluent. The investigated AgNPs lose most of their toxicity while passing through the STP. Accumulation of silver in the animals exposed to the different treatments was apparent, whereby silver ions (Ag+) released from AgNPs were supposed to be the major pathway leading to body burden

    Testing the bioaccumulation of manufactured nanomaterials in the freshwater bivalve Corbicula fluminea using a new test method

    No full text
    Increasing amounts of manufactured nanomaterials (MNMs) are produced for their industrial use and released to the environment by the usage or disposal of the products. As depending on their annual production rate, substances are subjected to PBT assessment, the availability of reliable methods to evaluate these endpoints for (corresponding) nanoforms/MNMs becomes relevant. The classical method to elucidate the bioaccumulation potential of chemicals has been the flow-through study with fish, which has limitations as regards meeting the requirements of MNMs. Most MNMs tend to sediment in the aquatic environment. Thus, maintenance of stable exposure conditions for bioaccumulation testing with fish is nearly impossible to achieve when using MNMs. Corbicula fluminea, a freshwater filter-feeding bivalve distributed worldwide, has been previously shown to ingest and accumulate MNMs present in the water phase. To investigate the suitability of C. fluminea for bioaccumulation testing we developed a new flow-through system to expose mussels under constant exposure conditions. Two nanoparticles (NPs), the AgNP NM 300K and the TiO2NP NM 105, were applied. In addition, C. fluminea was exposed to AgNO3 as a source of dissolved Ag+ to compare the bioaccumulation of Ag in dissolved and nanoparticulate forms. For each MNM exposure scenario we were able to determine steady-state bioaccumulation factors. BAFss values of 31 and 128 for two NM 300K concentrations (0.624 and 6.177 μg Ag per L) and 6150 and 9022 for TiO2 (0.099 and 0.589 μg TiO2 per L) showed the exposure dependence of the BAFss estimates. The progression of metal uptake and elimination in the soft tissue provided clear indications that the uptake and thus accumulation is mainly driven by the uptake of NPs and less of dissolved ions

    Biodegradation of Volatile Chemicals in Soil: Separating Volatilization and Degradation in an Improved Test Setup (OECD 307)

    No full text
    During environmental risk assessments of chemicals, higher-tier biodegradation tests in soil, sediment, and surface-water systems are required using OECD standards 307, 308, and 309 guidelines, respectively. These guidelines are not suitable for testing highly volatile chemicals, and a biometer closed-incubation setup is recommended for testing slightly volatile chemicals. In this setup, the degradation kinetics of highly volatile chemicals can largely be influenced by volatilization. Additionally, guidelines lack sufficient information on test-system geometry and guidance on how to measure and maintain aerobic conditions during the test. Our objectives were (1) to design a closed test setup for biodegradation tests in soil in which the maintaining and measuring of aerobic conditions was possible without the loss of volatile test chemicals and (2) to suggest data-treatment measures for evaluating the degradation kinetics of volatile test chemicals. With the new setup, full-scale OECD 307 tests were performed using the volatile 14C-labeled chemicals decane and tetralin. For both test chemicals, reproducible complete mass balances were observed, and the new setup ensured that the volatilization losses were kept below the mineralized fraction. Based on the obtained data, an extended model was developed that enabled consideration of the volatilization in the modeling of degradation kinetics

    Scientific rationale for the development of an OECD test guideline on engineered nanomaterial stability

    No full text
    Standardized methods for assessing the behaviour of engineered nanomaterials (ENMs) under relevant environmental conditions are an important part of ENM risk assessment. Existing assays, often developed for traditional chemicals, are frequently not applicable to ENMs, which present special challenges due to their particulate nature and complex intrinsic and extrinsic properties. Here we present the development of the novel OECD test guideline (TG) No. 318 for studying the "dispersion stability of nanomaterials in simulated environmental media". We discuss the rationalization of the test design and required simplifications to develop a test, which can be executed in standard laboratories on a routine basis at reasonable costs. The relevance of the test for capturing ENM stability in surface waters is ensured by a strategic selection of adequate test media and testing scheme. As an example, we present data of a full test performed according to the new OECD TG using NM 105 as a representative TiO2 ENM. Limitations of the test in terms of scarce kinetic information and a focus on homo-instead of heteroaggregation are discussed. The developed OECD Test No. 318 represents the first standardized assay for ENMs using an operationally defined testing scheme capable of systematically comparing different ENMs in terms of their dispersion stability under environmentally relevant conditions. It will provide crucial data to inform risk assessment and regulation and can be adapted to different types of test media if needed
    corecore