6,027 research outputs found
European Productivity Gaps: Is R&D the solution?
R&D, productivity, European
Entropy and Temperature of a Quantum Carnot Engine
It is possible to extract work from a quantum-mechanical system whose
dynamics is governed by a time-dependent cyclic Hamiltonian. An energy bath is
required to operate such a quantum engine in place of the heat bath used to run
a conventional classical thermodynamic heat engine. The effect of the energy
bath is to maintain the expectation value of the system Hamiltonian during an
isoenergetic expansion. It is shown that the existence of such a bath leads to
equilibrium quantum states that maximise the von Neumann entropy. Quantum
analogues of certain thermodynamic relations are obtained that allow one to
define the temperature of the energy bath.Comment: 4 pages, 1 figur
Graded Management Intensity of Grassland System for Enhancing Biodiversity on a Species and Landscape Scale
The objective of our research is to maintain and enhance wildlife resources, landscape diversity and economic competitiveness of grassland-ruminant systems. This may be accomplished by a diversified, graded management intensity of pastures and meadows (Dietl,1990), resulting in a network of intensively and extensively used grassland and other semi-natural habitats. Botanical diversity is thus increased on both a habitat and landscape level. In intensively farmed regions it may be necessary to re-establish species-rich grassland types and adjust management intensity to the site conditions and species’ requirements
European productivity gaps: Is R&D the solution?
This paper investigates the potential impact of increased business R&D efforts in Europe on the total factor productivity gap between European and U.S. industry. The paper addresses Europe’s ambition, expressed at the 2000 Lisbon Summit to become "the most competitive and dynamic knowledge-based economy in the world", and the 3% R&D intensity target for Europe formulated at the 2002 Barcelona Summit. Based on existing empirical models from the literature on productivity and R&D expenditures, we provide projections on the expected productivity impacts of increased R&D in manufacturing industries. The results suggest that raising European R&D is not a complete solution to the European productivity backlog relative to the U.S. We also find that the most dramatic impacts may be expected from raising R&D in so-called low-tech sectors
Resonators coupled to voltage-biased Josephson junctions: From linear response to strongly driven nonlinear oscillations
Motivated by recent experiments, where a voltage biased Josephson junction is
placed in series with a resonator, the classical dynamics of the circuit is
studied in various domains of parameter space. This problem can be mapped onto
the dissipative motion of a single degree of freedom in a nonlinear
time-dependent potential, where in contrast to conventional settings the
nonlinearity appears in the driving while the static potential is purely
harmonic. For long times the system approaches steady states which are analyzed
in the underdamped regime over the full range of driving parameters including
the fundamental resonance as well as higher and sub-harmonics. Observables such
as the dc-Josephson current and the radiated microwave power give direct
information about the underlying dynamics covering phenomena as bifurcations,
irregular motion, up- and down conversion. Due to their tunability, present and
future set-ups provide versatile platforms to explore the changeover from
linear response to strongly nonlinear behavior in driven dissipative systems
under well defined conditions.Comment: 12 pages, 11 figure
- …