60 research outputs found

    A null mutation of the neuronal sodium channel NaV1.6 disrupts action potential propagation and excitation‐contraction coupling in the mouse heart

    Full text link
    Evidence supports the expression of brain‐type sodium channels in the heart. Their functional role, however, remains controversial. We used global NaV1.6‐null mice to test the hypothesis that NaV1.6 contributes to the maintenance of propagation in the myocardium and to excitation‐contraction (EC) coupling. We demonstrated expression of transcripts encoding full‐length NaV1.6 in isolated ventricular myocytes and confirmed the striated pattern of NaV1.6 fluorescence in myocytes. On the ECG, the PR and QRS intervals were prolonged in the null mice, and the Ca2+ transients were longer in the null cells. Under patch clamping, at holding potential (HP) = –120 mV, the peak INa was similar in both phenotypes. However, at HP = –70 mV, the peak INa was smaller in the nulls. In optical mapping, at 4 mM [K+]o, 17 null hearts showed slight (7%) reduction of ventricular conduction velocity (CV) compared to 16 wild‐type hearts. At 12 mM [K+]o, CV was 25% slower in a subset of 9 null vs. 9 wild‐type hearts. These results highlight the importance of neuronal sodium channels in the heart, whereby NaV1.6 participates in EC coupling, and represents an intrinsic depolarizing reserve that contributes to excitation.—Noujaim, S. F., Kaur, K., Milstein, M., Jones, J. M., Furspan, P., Jiang, D., Auerbach, D. S., Herron, T., Meisler, M. H., Jalife, J. A null mutation of the neuronal sodium channel NaV1.6 disrupts action potential propagation and excitation‐contraction coupling in the mouse heart. FASEB J. 26, 63–72 (2012). www.fasebj.orgPeer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/154524/1/fsb2fj10179770.pd

    Allelic mutations of the sodium channel SCN8A reveal multiple cellular and physiological functions

    Full text link
    Allelic mutations of Scn8a in the mouse have revealed the range of neurological disorders that can result from alternations of one neuronal sodium channel. Null mutations produce the most severe phenotype, with motor neuron failure leading to paralysis and juvenile lethality. Two less severe mutations cause ataxia, tremor, muscle weakness, and dystonia. The electrophysiological effects have been studied at the cellular level by recording from neurons from the mutant mice. The data demonstrate that Scn8a is required for the complex spiking of cerebellar Purkinje cells and for persistent sodium current in several classes of neurons, including some with pacemaker roles. The mouse mutations of Scn8a have also provided insight into the mode of inheritance of channelopathies, and led to the identification of a modifier gene that affects transcript splicing. These mutations demonstrate the value of mouse models to elucidate the pathophysiology of human disease.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/42795/1/10709_2004_Article_5381441.pd

    An analysis-ready and quality controlled resource for pediatric brain white-matter research

    Get PDF
    We created a set of resources to enable research based on openly-available diffusion MRI (dMRI) data from the Healthy Brain Network (HBN) study. First, we curated the HBN dMRI data (N = 2747) into the Brain Imaging Data Structure and preprocessed it according to best-practices, including denoising and correcting for motion effects, susceptibility-related distortions, and eddy currents. Preprocessed, analysis-ready data was made openly available. Data quality plays a key role in the analysis of dMRI. To optimize QC and scale it to this large dataset, we trained a neural network through the combination of a small data subset scored by experts and a larger set scored by community scientists. The network performs QC highly concordant with that of experts on a held out set (ROC-AUC = 0.947). A further analysis of the neural network demonstrates that it relies on image features with relevance to QC. Altogether, this work both delivers resources to advance transdiagnostic research in brain connectivity and pediatric mental health, and establishes a novel paradigm for automated QC of large datasets

    Author Correction: An analysis-ready and quality controlled resource for pediatric brain white-matter research

    Get PDF

    Conserved Linkage of Early Growth Response 4, Annexin 4, and Transforming Growth Factor [alpha] on Mouse Chromosome 6

    Full text link
    The mouse genes encoding early growth response 4 (Egr4), annexin IV (Anx4), and transforming growth factor a (Tgfa) have been mapped to a linkage group on mouse chromosome 6 that is conserved on human chromosome 2p11-p13. The genes are closely linked, with 0/215 recombinants between Anx4 and Tgfa and 1/215 recombinants between these genes and Egr4 . The genes are located approximately 2 cM distal to mnd2, a mouse mutation causing neuromuscular disease. The results demonstrate that mnd2 is located at an internal position within this conserved linkage group.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/31832/1/0000779.pd
    • 

    corecore