7 research outputs found

    The Two Variants of Oxysterol Binding Protein-related Protein-1 Display Different Tissue Expression Patterns, Have Different Intracellular Localization, and Are Functionally Distinct

    No full text
    Oxysterol binding protein (OSBP) homologs comprise a family of 12 proteins in humans (Jaworski et al., 2001; Lehto et al., 2001). Two variants of OSBP-related protein (ORP) 1 have been identified: a short one that consists of the carboxy-terminal ligand binding domain only (ORP1S, 437 aa) and a longer N-terminally extended form (ORP1L, 950 aa) encompassing three ankyrin repeats and a pleckstrin homology domain (PHD). We now report that the two mRNAs show marked differences in tissue expression. ORP1S predominates in skeletal muscle and heart, whereas ORP1L is the most abundant form in brain and lung. On differentiation of primary human monocytes into macrophages, both ORP1S and ORP1L mRNAs were induced, the up-regulation of ORP1L being >100-fold. The intracellular localization of the two ORP1 variants was found to be different. Whereas ORP1S is largely cytosolic, the ORP1L variant localizes to late endosomes. A significant amount of ORP1S but only little ORP1L was found in the nucleus. The ORP1L ankyrin repeat region (aa 1–237) was found to localize to late endosomes such as the full-length protein. This localization was even more pronounced for a fragment that additionally includes the PHD (aa 1–408). The amino-terminal region of ORP1L consisting of the ankyrin repeat and PHDs is therefore likely to be responsible for the targeting of ORP1L to late endosomes. Interestingly, overexpression of ORP1L was found to enhance the LXRα-mediated transactivation of a reporter gene, whereas ORP1S failed to influence this process. The results suggest that the two forms of ORP1 are functionally distinct and that ORP1L is involved in control of cellular lipid metabolism

    Emulsion sheet doublets as interface trackers for the OPERA experiment

    No full text
    New methods for efficient and unambiguous interconnection between electronic position sensitive detectors and target units based on nuclear photographic emulsion films have been developed. The application to the OPERA experiment,that aims at detecting Vμ⇋Vτoscillations in the CNGS neutrino beam,is reported in this paper. In order to reduce background due to latent tracks collected before installation in the detector,on-site large-scale treatments of the emulsions (“refreshing”) have been applied. Changeable Sheet (CSd) packages,each made of a doublet of emulsion films,have been designed,assembled and coupled to the OPERA target units (“ECC bricks”). A device has been built to print X-ray spots for accurate interconnection both within the CSd and between the CSd and the related ECC brick. Sample emulsion films have been extensively scanned with state-of-the-art automated optical microscopes. Efficient track-matching and powerful background rejection have been achieved in tests with electronically tagged penetrating muons. Further improvement of in-doublet film alignment was obtained by matching the pattern of low-energy electron tracks. The commissioning of the overall OPERA alignment procedure is in progress

    Monitoring Microbial Spoilage of Foods by Vibrational Spectroscopy (FT-IR & Raman)

    No full text
    corecore