21 research outputs found

    Brain antigens in functionally distinct antigen-presenting cell populations in cervical lymph nodes in MS and EAE

    Get PDF
    Drainage of central nervous system (CNS) antigens to the brain-draining cervical lymph nodes (CLN) is likely crucial in the initiation and control of autoimmune responses during multiple sclerosis (MS). We demonstrate neuronal antigens within CLN of MS patients. In monkeys and mice with experimental autoimmune encephalomyelitis (EAE) and in mouse models with non-inflammatory CNS damage, the type and extent of CNS damage was associated with the frequencies of CNS antigens within the cervical lymph nodes. In addition, CNS antigens drained to the spinal-cord-draining lumbar lymph nodes. In human MS CLN, neuronal antigens were present in pro-inflammatory antigen-presenting cells (APC), whereas the majority of myelin-containing cells were anti-inflammatory. This may reflect a different origin of the cells or different drainage mechanisms. Indeed, neuronal antigen-containing cells in human CLN did not express the lymph node homing receptor CCR7, whereas myelin antigen-containing cells in situ and in vitro did. Nevertheless, CLN from EAE-affected CCR7-deficient mice contained equal amounts of myelin and neuronal antigens as wild-type mice. We conclude that the type and frequencies of CNS antigens within the CLN are determined by the type and extent of CNS damage. Furthermore, the presence of myelin and neuronal antigens in functionally distinct APC populations within MS CLN suggests that differential immune responses can be evoked

    Diverse BRCA1 and BRCA2 Reversion Mutations in Circulating Cell-Free DNA of Therapy-Resistant Breast or Ovarian Cancer

    Get PDF
    Purpose:; Resistance to platinum-based chemotherapy or PARP inhibition in germline; BRCA1; or; BRCA2; mutation carriers may occur through somatic reversion mutations or intragenic deletions that restore BRCA1 or BRCA2 function. We assessed whether; BRCA1/2; reversion mutations could be identified in circulating cell-free DNA (cfDNA) of patients with ovarian or breast cancer previously treated with platinum and/or PARP inhibitors.; Experimental Design:; cfDNA from 24 prospectively accrued patients with germline; BRCA1; or; BRCA2; mutations, including 19 patients with platinum-resistant/refractory ovarian cancer and five patients with platinum and/or PARP inhibitor pretreated metastatic breast cancer, was subjected to massively parallel sequencing targeting all exons of 141 genes and all exons and introns of; BRCA1; and; BRCA2; Functional studies were performed to assess the impact of the putative; BRCA1/2; reversion mutations on BRCA1/2 function.; Results:; Diverse and often polyclonal putative; BRCA1; or; BRCA2; reversion mutations were identified in cfDNA from four patients with ovarian cancer (21%) and from two patients with breast cancer (40%).; BRCA2; reversion mutations were detected in cfDNA prior to PARP inhibitor treatment in a patient with breast cancer who did not respond to treatment and were enriched in plasma samples after PARP inhibitor therapy. Foci formation and immunoprecipitation assays suggest that a subset of the putative reversion mutations restored BRCA1/2 function.; Conclusions:; Putative; BRCA1/2; reversion mutations can be detected by cfDNA sequencing analysis in patients with ovarian and breast cancer. Our findings warrant further investigation of cfDNA sequencing to identify putative; BRCA1/2; reversion mutations and to aid the selection of patients for PARP inhibition therapy.; Clin Cancer Res; 23(21); 6708-20. ©2017 AACR;
    corecore