6 research outputs found
Biocomposite for Prolonged Release of Water-Soluble Drugs
This study aimed to develop a prolonged-release system based on palygorskite and chitosan,
which are natural ingredients widely available, affordable, and accessible. The chosen model drug
was ethambutol (ETB), a tuberculostatic drug with high aqueous solubility and hygroscopicity, which
is incompatible with other drugs used in tuberculosis therapy. The composites loaded with ETB were
obtained using different proportions of palygorskite and chitosan through the spray drying technique.
The main physicochemical properties of the microparticles were determined using XRD, FTIR, thermal
analysis, and SEM. Additionally, the release profile and biocompatibility of the microparticles were
evaluated. As a result, the chitosan–palygorskite composites loaded with the model drug appeared
as spherical microparticles. The drug underwent amorphization within the microparticles, with
an encapsulation efficiency greater than 84%. Furthermore, the microparticles exhibited prolonged
release, particularly after the addition of palygorskite. They demonstrated biocompatibility in an
in vitro model, and their release profile was influenced by the proportion of inputs in the formulation.
Therefore, incorporating ETB into this system offers improved stability for the administered product
in the initial tuberculosis pharmacotherapy dose, minimizing its contact with other tuberculostatic
agents in the treatment, as well as reducing its hygroscopicityCoordenação de Aperfeiçoamento de Pessoal de
NĂvel Superior-Brazil (CAPES)—Process n 88887.131333/2016-00
Development and Characterization of Aloe vera Mucilaginous-Based Hydrogels for Psoriasis Treatment
The Aloe vera (L.) Burman f. pulp extract (AE), obtained from the inner parts of Aloe vera leaves, is rich in polysaccharides, including glucomannans, acemannans, pectic compounds, cellulose, and hemicelluloses; acemannan and glucomannan are considered the two main components responsible for most of the plant’s therapeutical properties. Besides having anti-inflammatory activity, these polysaccharides accelerate wound healing and promote skin regeneration, thus they can be utilized in healing products. The objective of this study was to develop Aloe vera mucilaginous-based hydrogels for topical use in psoriasis treatment. The hydrogels were prepared with 80% w/w of A. vera mucilaginous gel, evaluating two distinct polymers as the gelling agent: 1% carbopol 940 (FC1 and FC2) or 2% hydroxyethylcellulose (FH3 and FH4). FC1, FC2, FH3 and FH4 were evaluated for their organoleptic characteristics, rheological properties, pH and glucomannan content. Polysaccharide fractions (PFs) were extracted from the AE and used as a group of chemical markers and characterized by infrared (IR) spectroscopy and 1H nuclear magnetic resonance (H NMR). The quantification of these markers in the raw material (AE) and in the hydrogels was carried out using spectrophotometric techniques in the UV-VIS region. The hydrogels-based hydroxyethylcellulose (FH3 and FH4) had glucomannan contents of 6.76 and 4.01 mg/g, respectively. Formulations with carbopol, FC1 and FC2, had glucomannan contents of 8.69 and 9.17 mg/g, respectively, an ideal pH for application on psoriasis, in addition to good spreadability and pseudoplastic and thixotropic behavior. Considering these results, hydrogel FC1 was evaluated for its keratolytic activity in a murine model of hyperkeratinization. For that, 0.5 mL of test formulations FC1 and FPC (0.05% clobetasol propionate cream) were topically applied to the proximal region of adult rats daily for 13 days. After euthanasia, approximately 2.5 cm of the proximal portion of each animal’s tail was cut and placed in 10% buffered formalin. Then, each tail fragment was processed and stained with hematoxylin and eosin (HE), and the results obtained from the histological sections indicated a 61% reduction in stratum corneum for animals treated with the A. vera hydrogel (FC1G) and 66% for animals treated with clobetasol propionate (PCG), compared to the group of animals that did not receive treatment (WTG). This study led to the conclusion that compared to the classic treatment (clobetasol propionate), the 80% A. vera hydrogel showed no significant difference, being effective in controlling hyperkeratinization
Biocomposite for Prolonged Release of Water-Soluble Drugs
This study aimed to develop a prolonged-release system based on palygorskite and chitosan, which are natural ingredients widely available, affordable, and accessible. The chosen model drug was ethambutol (ETB), a tuberculostatic drug with high aqueous solubility and hygroscopicity, which is incompatible with other drugs used in tuberculosis therapy. The composites loaded with ETB were obtained using different proportions of palygorskite and chitosan through the spray drying technique. The main physicochemical properties of the microparticles were determined using XRD, FTIR, thermal analysis, and SEM. Additionally, the release profile and biocompatibility of the microparticles were evaluated. As a result, the chitosan–palygorskite composites loaded with the model drug appeared as spherical microparticles. The drug underwent amorphization within the microparticles, with an encapsulation efficiency greater than 84%. Furthermore, the microparticles exhibited prolonged release, particularly after the addition of palygorskite. They demonstrated biocompatibility in an in vitro model, and their release profile was influenced by the proportion of inputs in the formulation. Therefore, incorporating ETB into this system offers improved stability for the administered product in the initial tuberculosis pharmacotherapy dose, minimizing its contact with other tuberculostatic agents in the treatment, as well as reducing its hygroscopicity
Production Technologies, Regulatory Parameters, and Quality Control of Vaccine Vectors for Veterinary Use
This paper presents a comprehensive review of the main types of vaccines approaching production technology, regulatory parameters, and the quality control of vaccines. Bioinformatic tools and computational strategies have been used in the research and development of new pharmaceutical products, reducing the time between supposed pharmaceutical product candidates (R&D steps) and final products (to be marketed). In fact, in the reverse vaccinology field, in silico studies can be very useful in identifying possible vaccine targets from databases. In addition, in some cases (subunit or RNA/ DNA vaccines), the in silico approach permits: (I) the evaluation of protein immunogenicity through the prediction of epitopes, (II) the potential adverse effects of antigens through the projection of similarity to host proteins, (III) toxicity and (IV) allergenicity, contributing to obtaining safe, effective, stable, and economical vaccines for existing and emerging infectious pathogens. Additionally, the rapid growth of emerging infectious diseases in recent years should be considered a driving force for developing and implementing new vaccines and reassessing vaccine schedules in companion animals, food animals, and wildlife disease control. Comprehensive and well-planned vaccination schedules are effective strategies to prevent and treat infectious diseases
Development and Characterization of Aloe vera Mucilaginous-Based Hydrogels for Psoriasis Treatment
The Aloe vera (L.) Burman f. pulp extract (AE), obtained from the inner parts of Aloe vera leaves, is rich in polysaccharides, including glucomannans, acemannans, pectic compounds, cellulose, and hemicelluloses; acemannan and glucomannan are considered the two main components responsible for most of the plant’s therapeutical properties. Besides having anti-inflammatory activity, these polysaccharides accelerate wound healing and promote skin regeneration, thus they can be utilized in healing products. The objective of this study was to develop Aloe vera mucilaginous-based hydrogels for topical use in psoriasis treatment. The hydrogels were prepared with 80% w/w of A. vera mucilaginous gel, evaluating two distinct polymers as the gelling agent: 1% carbopol 940 (FC1 and FC2) or 2% hydroxyethylcellulose (FH3 and FH4). FC1, FC2, FH3 and FH4 were evaluated for their organoleptic characteristics, rheological properties, pH and glucomannan content. Polysaccharide fractions (PFs) were extracted from the AE and used as a group of chemical markers and characterized by infrared (IR) spectroscopy and 1H nuclear magnetic resonance (1H NMR). The quantification of these markers in the raw material (AE) and in the hydrogels was carried out using spectrophotometric techniques in the UV-VIS region. The hydrogels-based hydroxyethylcellulose (FH3 and FH4) had glucomannan contents of 6.76 and 4.01 mg/g, respectively. Formulations with carbopol, FC1 and FC2, had glucomannan contents of 8.69 and 9.17 mg/g, respectively, an ideal pH for application on psoriasis, in addition to good spreadability and pseudoplastic and thixotropic behavior. Considering these results, hydrogel FC1 was evaluated for its keratolytic activity in a murine model of hyperkeratinization. For that, 0.5 mL of test formulations FC1 and FPC (0.05% clobetasol propionate cream) were topically applied to the proximal region of adult rats daily for 13 days. After euthanasia, approximately 2.5 cm of the proximal portion of each animal’s tail was cut and placed in 10% buffered formalin. Then, each tail fragment was processed and stained with hematoxylin and eosin (HE), and the results obtained from the histological sections indicated a 61% reduction in stratum corneum for animals treated with the A. vera hydrogel (FC1G) and 66% for animals treated with clobetasol propionate (PCG), compared to the group of animals that did not receive treatment (WTG). This study led to the conclusion that compared to the classic treatment (clobetasol propionate), the 80% A. vera hydrogel showed no significant difference, being effective in controlling hyperkeratinization
Development and Characterization of <i>Aloe vera</i> Mucilaginous-Based Hydrogels for Psoriasis Treatment
The Aloe vera (L.) Burman f. pulp extract (AE), obtained from the inner parts of Aloe vera leaves, is rich in polysaccharides, including glucomannans, acemannans, pectic compounds, cellulose, and hemicelluloses; acemannan and glucomannan are considered the two main components responsible for most of the plant’s therapeutical properties. Besides having anti-inflammatory activity, these polysaccharides accelerate wound healing and promote skin regeneration, thus they can be utilized in healing products. The objective of this study was to develop Aloe vera mucilaginous-based hydrogels for topical use in psoriasis treatment. The hydrogels were prepared with 80% w/w of A. vera mucilaginous gel, evaluating two distinct polymers as the gelling agent: 1% carbopol 940 (FC1 and FC2) or 2% hydroxyethylcellulose (FH3 and FH4). FC1, FC2, FH3 and FH4 were evaluated for their organoleptic characteristics, rheological properties, pH and glucomannan content. Polysaccharide fractions (PFs) were extracted from the AE and used as a group of chemical markers and characterized by infrared (IR) spectroscopy and 1H nuclear magnetic resonance (1H NMR). The quantification of these markers in the raw material (AE) and in the hydrogels was carried out using spectrophotometric techniques in the UV-VIS region. The hydrogels-based hydroxyethylcellulose (FH3 and FH4) had glucomannan contents of 6.76 and 4.01 mg/g, respectively. Formulations with carbopol, FC1 and FC2, had glucomannan contents of 8.69 and 9.17 mg/g, respectively, an ideal pH for application on psoriasis, in addition to good spreadability and pseudoplastic and thixotropic behavior. Considering these results, hydrogel FC1 was evaluated for its keratolytic activity in a murine model of hyperkeratinization. For that, 0.5 mL of test formulations FC1 and FPC (0.05% clobetasol propionate cream) were topically applied to the proximal region of adult rats daily for 13 days. After euthanasia, approximately 2.5 cm of the proximal portion of each animal’s tail was cut and placed in 10% buffered formalin. Then, each tail fragment was processed and stained with hematoxylin and eosin (HE), and the results obtained from the histological sections indicated a 61% reduction in stratum corneum for animals treated with the A. vera hydrogel (FC1G) and 66% for animals treated with clobetasol propionate (PCG), compared to the group of animals that did not receive treatment (WTG). This study led to the conclusion that compared to the classic treatment (clobetasol propionate), the 80% A. vera hydrogel showed no significant difference, being effective in controlling hyperkeratinization