55 research outputs found
Transport properties of copper phthalocyanine based organic electronic devices
Ambipolar charge carrier transport in Copper phthalocyanine (CuPc) is studied
experimentally in field-effect transistors and metal-insulator-semiconductor
diodes at various temperatures. The electronic structure and the transport
properties of CuPc attached to leads are calculated using density functional
theory and scattering theory at the non-equilibrium Green's function level. We
discuss, in particular, the electronic structure of CuPc molecules attached to
gold chains in different geometries to mimic the different experimental setups.
The combined experimental and theoretical analysis explains the dependence of
the mobilityand the transmission coefficient on the charge carrier type
(electrons or holes) and on the contact geometry. We demonstrate the
correspondence between our experimental results on thick films and our
theoretical studies of single molecule contacts. Preliminary results for
fluorinated CuPc are discussed.Comment: 18 pages, 16 figures; to be published in Eur. Phys. J. Special Topic
Density functional method for nonequilibrium electron transport
We describe an ab initio method for calculating the electronic structure,
electronic transport, and forces acting on the atoms, for atomic scale systems
connected to semi-infinite electrodes and with an applied voltage bias. Our
method is based on the density functional theory (DFT) as implemented in the
well tested Siesta approach (which uses non-local norm-conserving
pseudopotentials to describe the effect of the core electrons, and linear
combination of finite-range numerical atomic orbitals to describe the valence
states). We fully deal with the atomistic structure of the whole system,
treating both the contact and the electrodes on the same footing. The effect of
the finite bias (including selfconsistency and the solution of the
electrostatic problem) is taken into account using nonequilibrium Green's
functions. We relate the nonequilibrium Green's function expressions to the
more transparent scheme involving the scattering states. As an illustration,
the method is applied to three systems where we are able to compare our results
to earlier ab initio DFT calculations or experiments, and we point out
differences between this method and existing schemes. The systems considered
are: (1) single atom carbon wires connected to aluminum electrodes with
extended or finite cross section, (2) single atom gold wires, and finally (3)
large carbon nanotube systems with point defects.Comment: 18 pages, 23 figure
Nonquasiparticle states in half-metallic ferromagnets
Anomalous magnetic and electronic properties of the half-metallic
ferromagnets (HMF) have been discussed. The general conception of the HMF
electronic structure which take into account the most important correlation
effects from electron-magnon interactions, in particular, the spin-polaron
effects, is presented. Special attention is paid to the so called
non-quasiparticle (NQP) or incoherent states which are present in the gap near
the Fermi level and can give considerable contributions to thermodynamic and
transport properties. Prospects of experimental observation of the NQP states
in core-level spectroscopy is discussed. Special features of transport
properties of the HMF which are connected with the absence of one-magnon
spin-flip scattering processes are investigated. The temperature and magnetic
field dependences of resistivity in various regimes are calculated. It is shown
that the NQP states can give a dominate contribution to the temperature
dependence of the impurity-induced resistivity and in the tunnel junction
conductivity. First principle calculations of the NQP-states for the prototype
half-metallic material NiMnSb within the local-density approximation plus
dynamical mean field theory (LDA+DMFT) are presented.Comment: 27 pages, 9 figures, Proceedings of Berlin/Wandlitz workshop 2004;
Local-Moment Ferromagnets. Unique Properties for Moder Applications, ed. M.
Donath, W.Nolting, Springer, Berlin, 200
- …