40 research outputs found

    Isotonic transport by the Na+-glucose cotransporter SGLT1 from humans and rabbit.

    No full text
    1. In order to study its role in steady state water transport, the Na(+)-glucose cotransporter (SGLT1) was expressed in Xenopus laevis oocytes; both the human and the rabbit clones were tested. The transport activity was monitored as a clamp current and the flux of water followed optically as the change in oocyte volume. 2. SGLT1 has two modes of water transport. First, it acts as a molecular water pump: for each 2 Na(+) and 1 sugar molecule 264 water molecules were cotransported in the human SGLT1 (hSGLT1), 424 for the rabbit SGLT1 (rSGLT1). Second, it acts as a water channel. 3. The cotransport of water was tightly coupled to the sugar-induced clamp current. Instantaneous changes in clamp current induced by changes in clamp voltage were accompanied by instantaneous changes in the rate of water transport. 4. The cotransported solution was predicted to be hypertonic, and an osmotic gradient built up across the oocyte membrane with continued transport; this resulted in an additional osmotic influx of water. After 5-10 min a steady state was achieved in which the total influx was predicted to be isotonic with the intracellular solution. 5. With the given expression levels, the steady state water transport was divided about equally between cotransport, osmosis across the SGLT1 and osmosis across the native oocyte membrane. 6. Coexpression of AQP1 with the SGLT1 increased the water permeability more than 10-fold and steady state isotonic transport was achieved after less than 2 s of sugar activation. One-third of the water was cotransported, and the remainder was osmotically driven through the AQP1. 7. The data suggest that SGLT1 has three roles in isotonic water transport: it cotransports water directly, it supplies a passive pathway for osmotic water transport, and it generates an osmotic driving force that can be employed by other pathways, for example aquaporins

    Reliability and validity of non-invasive determined haemoglobin mass and blood volumes

    No full text
    Introduction: The carbon monoxide (CO) rebreathing method used for the determination of haemoglobin mass (Hbmass) is associated with blood sample analysis (in this study: Radiometer ABL800). As an alternative hereto the aim of the present study was to evaluate the use of a portable and non-invasive CO pulse oximeter (Rad-57). Method: With simultaneous determination of CO in the circulation by ABL800 (%HbCO) and Rad-57 (SpCO), Hbmass and blood volume (BV) were determined in duplicates in 24 volunteers. Percentage of typical errors (%TE) within methods and linear correlations between the two procedures were computed. Results: Hbmass (Rad-57 = 798 ± 230 g; ABL800 = 781 ± 192 g) and BV (Rad-57 = 5700 ± 1373 ml; ABL800 = 5581 ± 1096 ml) were similar between methods. However, the %TE for Hbmass was higher (P 905 g and BV > 6193 ml. Conclusion: Assessment of SpCO by Rad-57 resulted in considerably less precise determinations of Hbmass and BV, especially for high values. Thus, non-invasive assessment of Hbmass and BV cannot be recommended for scientific purposes, but may nonetheless be useful in clinical settings

    Voltage- and substrate-dependent interactions between sites in putative re-entrant domains of a Na(+)-coupled phosphate cotransporter

    Full text link
    A common structural feature characterises sodium-coupled inorganic phosphate cotransporters of the SLC34 family (NaPi-IIa/b/c): a pair of inverted regions in the N- and C-terminal halves of the protein. These regions are hypothesised to contain re-entrant domains that associate to allow alternating access of the substrates from either side of the membrane. To investigate if these domains interact during the NaPi-II transport cycle, we introduced novel cysteines at three functionally important sites associated with the predicted re-entrant domains of the flounder NaPi-IIb for the purpose of fluorescent labelling and cross-linking. Single and double mutants were expressed in Xenopus oocytes and their function analysed using electrophysiological and real-time fluorometric assays. The substitution at the cytosolic end of the first re-entrant domain induced a large hyperpolarizing shift in the voltage dependence of steady-state and presteady-state kinetics, whereas the two substitutions at the external face were less critical. By using Cu-phenanthroline to induce disulfide bridge formation, we observed a loss of transport activity that depended on the presence of sodium in the incubation medium. This suggested that external sodium increased the probability of NaPi-IIb occupying a conformation that favours interaction between sites in the re-entrant domains. Furthermore, voltage-dependent fluorescence data supported the hypothesis that a localised interaction between the two domains occurs that depends on the membrane potential and substrate present: we found that the fluorescence intensity reported by a labelled cysteine in one domain was dependent on the side chain substituted at a functionally critical site in the opposed domain
    corecore