4 research outputs found

    Simulations of cold electroweak baryogenesis: dependence on the source of CP-violation

    Get PDF
    We compute the baryon asymmetry created in a tachyonic electroweak symmetry breaking transition, focusing on the dependence on the source of effective CP-violation. Earlier simulations of Cold Electroweak Baryogenesis have almost exclusively considered a very specific CP-violating term explicitly biasing Chern-Simons number. We compare four different dimension six, scalar-gauge CP-violating terms, involving both the Higgs field and another dynamical scalar coupled to SU(2) or U(1) gauge fields. We find that for sensible values of parameters, all implementations can generate a baryon asymmetry consistent with observations, showing that baryogenesis is a generic outcome of a fast tachyonic electroweak transition

    Classical approximation to quantum cosmological correlations

    Full text link
    We investigate up to which order quantum effects can be neglected in calculating cosmological correlation functions after horizon exit. As a toy model, we study Ï•3\phi^3 theory on a de Sitter background for a massless minimally coupled scalar field Ï•\phi. We find that for tree level and one loop contributions in the quantum theory, a good classical approximation can be constructed, but for higher loop corrections this is in general not expected to be possible. The reason is that loop corrections get non-negligible contributions from loop momenta with magnitude up to the Hubble scale H, at which scale classical physics is not expected to be a good approximation to the quantum theory. An explicit calculation of the one loop correction to the two point function, supports the argument that contributions from loop momenta of scale HH are not negligible. Generalization of the arguments for the toy model to derivative interactions and the curvature perturbation leads to the conclusion that the leading orders of non-Gaussian effects generated after horizon exit, can be approximated quite well by classical methods. Furthermore we compare with a theorem by Weinberg. We find that growing loop corrections after horizon exit are not excluded, even in single field inflation.Comment: 44 pages, 1 figure; v2: corrected errors, added references, conclusions unchanged; v3: added section in which we compare with stochastic approach; this version matches published versio
    corecore