11 research outputs found

    Optimization of Ionic Soil Stabilizer Dilution and Understanding the Mechanism in Red Clay Treatment

    No full text
    Due to the insufficient understanding of the mechanism for soil strengthening by using Ionic Soil Stabilizer (ISS), the application of ISS in soil treatment is limited. In this paper, red clay samples were treated by using ISS and the effects were examined by the Atterberg test and uniaxial pressure test. In order to understand the mechanism, ISS dilution-based seepage test and ξ-potential test have been carried out. The results show that the ISS-Water mixture of 1 : 200 was the most effective ratio to reduce the plasticity index. The measurements indicate the thickness of the pair-electricity layer of adjacent clay layers and the repulsion force among soil particles is reduced, which in turn enhances the attraction force of the clay layers. This process strengthens the connection among the soil particles and thus increases the strength of the soil as detected by the experimental tests

    Molecular Characterization of Wheat Stripe Rust Pathogen (Puccinia striiformis f. sp. tritici) Collections from Nine Countries

    No full text
    Stripe rust, caused by Puccinia striiformis f. sp. tritici (Pst), is one of the most important diseases of wheat worldwide. To understand the worldwide distribution of its molecular groups, as well as the diversity, differentiation, and migration of the Pst populations, 567 isolates collected from nine countries (China, Pakistan, Italy, Egypt, Ethiopia, Canada, Mexico, Ecuador, and the U.S.) in 2010–2018 were genotyped using 14 codominant simple sequence repeat markers. A total of 433, including 333 new multi-locus genotypes (MLGs), were identified, which were clustered into ten molecular groups (MGs). The MGs and country-wise populations differed in genetic diversity, heterozygosity, and correlation coefficient between the marker and virulence data. Many isolates from different countries, especially the isolates from Mexico, Ecuador, and the U.S., were found to be identical or closely related MLGs, and some of the MGs were present in all countries, indicating Pst migrations among different countries. The analysis of molecular variance revealed 78% variation among isolates, 12% variation among countries, and 10% variation within countries. Only low levels of differentiation were found by the pairwise comparisons of country populations. Of the 10 MGs, 5 were found to be involved in sexual and/or somatic recombination. Identical and closely related MLGs identified from different countries indicated international migrations. The study provides information on the distributions of various Pst genetic groups in different countries and evidence for the global migrations, which should be useful in understanding the pathogen evolution and in stressing the need for continual monitoring of the disease and pathogen populations at the global scale

    Modulation of Structure and Optical Property of Nitrogen-Incorporated VO2 (M1) Thin Films by Polyvinyl Pyrrolidone

    No full text
    VO2, as a promising material for smart windows, has attracted much attention, and researchers have been continuously striving to optimize the performance of VO2-based materials. Herein, nitrogen-incorporated VO2 (M1) thin films, using a polyvinylpyrrolidone (PVP)-assisted sol–gel method followed by heat treatment in NH3 atmosphere, were synthesized, which exhibited a good solar modulation efficiency (ΔTsol) of 4.99% and modulation efficiency of 37.6% at 2000 nm (ΔT2000 nm), while their visible integrated transmittance (Tlum) ranged from 52.19% to 56.79% after the phase transition. The crystallization, microstructure, and thickness of the film could be regulated by varying PVP concentrations. XPS results showed that, in addition to the NH3 atmosphere-N doped into VO2 lattice, the pyrrolidone-N introduced N-containing groups with N–N, N–O, or N–H bonds into the vicinity of the surface or void of the film in the form of molecular adsorption or atom (N, O, and H) filling. According to the Tauc plot, the estimated bandgap of N-incorporated VO2 thin films related to metal-to-insulator transition (Eg1) was 0.16–0.26 eV, while that associated with the visible transparency (Eg2) was 1.31–1.45 eV. The calculated Eg1 and Eg2 from the first-principles theory were 0.1–0.5 eV and 1.4–1.6 eV, respectively. The Tauc plot estimation and theoretical calculations suggested that the combined effect of N-doping and N-adsorption with the extra atom (H, N, and O) decreased the critical temperature (τc) due to the reduction in Eg1

    Secreted protein gene derived-single nucleotide polymorphisms (SP-SNPs) reveal population diversity and differentiation of Puccinia striiformis f. sp. tritici in the United States

    No full text
    Single nucleotide polymorphism (SNP) is a powerful molecular marker technique that has been widely used in population genetics and molecular mapping studies for various organisms. However, the technique has not been used for studying Puccinia striiformis f. sp. tritici (Pst), the wheat stripe rust pathogen. In this study, we developed over a hundred secreted protein gene-derived SNP (SP-SNP) markers and used 92 markers to study the population structure of Pst. From 352 isolates collected in the United States, we identified 242 multi-locus genotypes. The SP-SNP genotypes had a moderate, but significant correlation with the virulence phenotype data. Clustering of the multi-locus genotypes was consistent by various analyses, revealing distinct genetic groups. Analysis of molecular variance detected significant differences between the eastern and western US Pst populations. High heterozygosity was found in the US population with significant differences identified among epidemiological regions. Analysis of population differentiation revealed that populations between the eastern and western US were highly differentiated while moderate differentiation was found in populations within the western or eastern US. Isolates from the western US were more diverse than isolates from the eastern US. The information is useful for guiding the disease management in different epidemiological regions. •We developed the first set of SNP markers of Puccinia striiformis f. sp. tritici based on secreted protein genes.•We detected significant differences between the eastern and western US P. striiformis f. sp. tritici populations.•We identified high heterozygosity in the pathogen populations with significant differences among epidemiological regions.•We demonstrated the usefulness of SNPs in studying population genetics of wheat stripe rust fungi
    corecore