51 research outputs found

    Observation of double star by long-baseline interferometry

    Get PDF
    This paper serves as a reference on how to estimate the parameters of binary stars and how to combine multiple techniques, namely astrometry, interferometry and radial velocities.Comment: F. Millour, A. Chiavassa, L. Bigot, O. Chesneau, A. Meilland \& P. Stee. What can the highest angular resolution bring to stellar astrophysics?, 69-70, EDP sciences, 2015, EAS publication series, 978-2-7598-1833-4. \<10.1051/eas/1569020\>. \<http://www.eas-journal.org/articles/eas/abs/2014/04/contents/contents.html\&g

    Optical interferometry and adaptive optics of bright transients

    Get PDF
    Bright optical transients (i.e. transients typically visible with the naked eye) are populated mainly by novae eruptions plus a few supernovae (among which the SN1987a event). One bright nova happen every two years, either in the North ot in the South hemisphere. It occurs that current interferometers have matching sensitivities, with typically visible or infrared limiting magnitude in the range 5--7. The temporal development of the fireball, followed by a dust formation phase or the appearance of many coronal lines can be sudied with the Very Large Telescope Interferometer. The detailed geometry of the first phases of novae in outburst remains virtually unexplored. This paper summarizes the work which has been done to date using the VLTI.Comment: Hot-wiring the transien Universe 3, Santa Fe : United States (2013

    B[e] stars at the highest angular resolution: the case of HD87643

    Get PDF
    New results on the B[e] star HD87643 are presented here. They were obtained with a wide range of different instruments, from wide-field imaging with the WFI camera, high resolution spectroscopy with the FEROS instrument, high angular resolution imaging with the adaptive optics camera NACO, to the highest angular resolution available with AMBER on the VLTI. We report the detection of a companion to HD87643 with AMBER, subsequently confirmed in the NACO data. Implications of that discovery to some of the previously difficult-to-understand data-sets are then presented.Comment: To be published in the proceedings of the 2009 SF2A conferenc

    Differential interferometry of QSO broad line regions I: improving the reverberation mapping model fits and black hole mass estimates

    Full text link
    Reverberation mapping estimates the size and kinematics of broad line regions (BLR) in Quasars and type I AGNs. It yields size-luminosity relation, to make QSOs standard cosmological candles, and mass-luminosity relation to study the evolution of black holes and galaxies. The accuracy of these relations is limited by the unknown geometry of the BLR clouds distribution and velocities. We analyze the independent BLR structure constraints given by super-resolving differential interferometry. We developed a three-dimensional BLR model to compute all differential interferometry and reverberation mapping signals. We extrapolate realistic noises from our successful observations of the QSO 3C273 with AMBER on the VLTI. These signals and noises quantify the differential interferometry capacity to discriminate and measure BLR parameters including angular size, thickness, spatial distribution of clouds, local-to-global and radial-to-rotation velocity ratios, and finally central black hole mass and BLR distance. A Markov Chain Monte Carlo model-fit, of data simulated for various VLTI instruments, gives mass accuracies between 0.06 and 0.13 dex, to be compared to 0.44 dex for reverberation mapping mass-luminosity fits. We evaluate the number of QSOs accessible to measures with current (AMBER), upcoming (GRAVITY) and possible (OASIS with new generation fringe trackers) VLTI instruments. With available technology, the VLTI could resolve more than 60 BLRs, with a luminosity range larger than four decades, sufficient for a good calibration of RM mass-luminosity laws, from an analysis of the variation of BLR parameters with luminosity.Comment: 19 pages, 14 figures, accepted by MNRAS on December 5, 201

    Three recipes for improving the image quality with optical long-baseline interferometers: BFMC, LFF, \& DPSC

    Get PDF
    We present here three recipes for getting better images with optical interferometers. Two of them, Low- Frequencies Filling and Brute-Force Monte Carlo were used in our participation to the Interferometry Beauty Contest this year and can be applied to classical imaging using V 2 and closure phases. These two addition to image reconstruction provide a way of having more reliable images. The last recipe is similar in its principle as the self-calibration technique used in radio-interferometry. We call it also self-calibration, but it uses the wavelength-differential phase as a proxy of the object phase to build-up a full-featured complex visibility set of the observed object. This technique needs a first image-reconstruction run with an available software, using closure-phases and squared visibilities only. We used it for two scientific papers with great success. We discuss here the pros and cons of such imaging technique.Comment: 9 pages, to be published in SPIE proceedings; Optical and Infrared Interferometry III, Amsterdam : Netherlands (2012

    The binary Be star δ\delta Scorpii at high spectral and spatial resolution : II The circumstellar disk evolution after the periastron

    Get PDF
    Classical Be stars are hot non-supergiant stars surrounded by a gaseous circumstellar disk that is responsible for the observed infrared (IR) excess and emission lines. The influence of binarity on these phenomena remains controversial. We followed the evolution of the environment surrounding the binary Be star δ\delta Scorpii one year before and one year after the 2011 periastron to check for any evidence of a strong interaction between its companion and the primary circumstellar disk. We used the VLTI/AMBER spectro-interferometric instrument operating in the K band in high (12000) spectral resolution to obtain information on both the disk geometry and kinematics. Observations were carried out in two emission lines: Brγ\gamma (2.172\,μ\mum) and \ion{He}{i} (2.056\,μ\mum). We detected some important changes in δ\delta Scorpii's circumstellar disk geometry between the first observation made in April 2010 and the new observation made in June 2012. During the last two years the disk has grown at a mean velocity of 0.2\,km\,s1^{-1}. This is compatible with the expansion velocity previously found during the 2001-2007 period. The disk was also found to be asymmetric at both epochs, but with a different morphology in 2010 and 2012. Considering the available spectroscopic data showing that the main changes in the emission-line profiles occurred quickly during the periastron, it is probable that the differences between the 2010 and 2012 disk geometry seen in our interferometric data stem from a disk perturbation caused by the companion tidal effects. However, taking into account that no significant changes have occurred in the disk since the end of the 2011 observing season, it is difficult to understand how this induced inhomogeneity has been "frozen" in the disk for such a long period.Comment: Astronomy and Astrophysics (2013

    Interactions in massive binary stars as seen by interferometry

    Get PDF
    International audienceWith the advent of large-collecting-area instruments, the number of objects that can be reached by optical long-baseline interferometry is steadily increasing. We present here a few results on massive binary stars, showing the interest of using this technique for studying the insight of interactions in these systems. Indeed, many massive stars with extended environments host, or are suspected to host, companion stars. These companions could have an important role in shaping the circumstellar environment of the system. These examples provide a view in which binarity could be an ingredient, among many others, for the activity of these stars

    Imaging "Pinwheel"nebulae with optical long-baseline interferometry

    Full text link
    Dusty Wolf-Rayet stars are few but remarkable in terms of dust production rates (up to one millionth of solar mass per year). Infrared excesses associated to mass-loss are found in the sub-types WC8 and WC9. Few WC9d stars are hosting a "pinwheel" nebula, indirect evidence of a companion star around the primary. While few other WC9d stars have a dust shell which has been barely resolved so far, the available angular resolution offered by single telescopes is insufficient to confirm if they also host "pinwheel" nebulae or not. In this article, we present the possible detection of such nebula around the star WR118. We discuss about the potential of interferometry to image more "pinwheel" nebulae around other WC9d stars.Comment: To be published soon in the conference proceedin

    Images of unclassified and supergiant B[e] stars disks with interferometry

    Get PDF
    B[e] stars are among the most peculiar objects in the sky. This spectral type, characterised by allowed and forbidden emission lines, and a large infrared excess, does not represent an homogenous class of objects, but instead, a mix of stellar bodies seen in all evolutionary status. Among them, one can find Herbig stars, planetary nebulae central stars, interacting binaries, supermassive stars, and even "unclassified" B[e] stars: systems sharing properties of several of the above. Interferometry, by resolving the innermost regions of these stellar systems, enables us to reveal the true nature of these peculiar stars among the peculiar B[e] stars.Comment: Proceeding submitted to the editors, to be published in the conference proceedin

    The galactic unclassified B[e] star HD 50138. I. A possible new shell phase

    Full text link
    The observed spectral variation of HD 50138 has led different authors to classify it in a very wide range of spectral types and luminosity classes (from B5 to A0 and III to Ia) and at different evolutionary stages as either HAeBe star or classical Be. Aims: Based on new high-resolution optical spectroscopic data from 1999 and 2007 associated to a photometric analysis, the aim of this work is to provide a deep spectroscopic description and a new set of parameters for this unclassified southern B[e] star and its interstellar extinction. Methods: From our high-resolution optical spectroscopic data separated by 8 years, we perform a detailed spectral description, presenting the variations seen and discussing their possible origin. We derive the interstellar extinction to HD 50138 by taking the influences of the circumstellar matter in the form of dust and an ionized disk into account. Based on photometric data from the literature and the new Hipparcos distance, we obtain a revised set of parameters for HD 50138. Results: Because of the spectral changes, we tentatively suggest that a new shell phase could have taken place prior to our observations in 2007. We find a color excess value of E(B-V) = 0.08 mag, and from the photometric analysis, we suggest that HD 50138 is a B6-7 III-V star. A discussion of the different evolutionary scenarios is also provided.Comment: Paper accepted for publication in A&A main journal (12 pages, 16 figures and a 3 pages-table). Language corrected versio
    corecore