80 research outputs found

    Long-term variability of solar irradiance and its implications for photovoltaic power in West Africa

    Get PDF
    This paper addresses long-term changes in solar irradiance for West Africa (3° N to 20° N and 20° W to 16° E) and its implications for photovoltaic power systems. Here we use satellite irradiance (Surface Solar Radiation Data Set-Heliosat, Edition 2.1, SARAH-2.1) to derive photovoltaic yields. Based on 35 years of data (1983–2017) the temporal and regional variability as well as long-term trends of global and direct horizontal irradiance are analyzed. Furthermore, at four locations a detailed time series analysis is undertaken. The dry and the wet season are considered separately

    Day-Ahead Electric Load Forecast for a Ghanaian Health Facility Using Different Algorithms

    Get PDF
    Ghana suffers from frequent power outages, which can be compensated by off-grid energy solutions. Photovoltaic-hybrid systems become more and more important for rural electrification due to their potential to offer a clean and cost-effective energy supply. However, uncertainties related to the prediction of electrical loads and solar irradiance result in inefficient system control and can lead to an unstable electricity supply, which is vital for the high reliability required for applications within the health sector. Model predictive control (MPC) algorithms present a viable option to tackle those uncertainties compared to rule-based methods, but strongly rely on the quality of the forecasts. This study tests and evaluates (a) a seasonal autoregressive integrated moving average (SARIMA) algorithm, (b) an incremental linear regression (ILR) algorithm, (c) a long short-term memory (LSTM) model, and (d) a customized statistical approach for electrical load forecasting on real load data of a Ghanaian health facility, considering initially limited knowledge of load and pattern changes through the implementation of incremental learning. The correlation of the electrical load with exogenous variables was determined to map out possible enhancements within the algorithms. Results show that all algorithms show high accuracies with a median normalized root mean square error (nRMSE) 1, methods via the LSTM model and the customized statistical approaches perform better with a median nRMSE of 0.061 and stable error distribution with a maximum nRMSE of <0.255. The conclusion of this study is a favoring towards the LSTM model and the statistical approach, with regard to MPC applications within photovoltaic-hybrid system solutions in the Ghanaian health sector

    Global horizontal irradiance in West Africa: evaluation of the WRF-solar model in convection-permitting mode with ground measurements

    Get PDF
    The number of solar power plants has increased in West Africa in recent years. Reliable reanalysis data and short-term forecasting of solar irradiance from numerical weather prediction models could provide an economic advantage for the planning and operation of solar power plants, especially in data-poor regions such as West Africa. This study presents a detailed assessment of different shortwave (SW) radiation schemes from the Weather Research and Forecasting (WRF) Model option Solar (WRF-Solar), with appropriate configurations for different atmospheric conditions in Ghana and the southern part of Burkina Faso. We applied two 1-way nested domains (D1 = 15 km and D2 = 3 km) to investigate four different SW schemes, namely, the Community Atmosphere Model, Dudhia, RRTMG, Goddard, and RRTMG without aerosol and with aerosol inputs (RRTMG_AERO). The simulation results were validated using hourly measurements from different automatic weather stations established in the study region in recent years. The results show that the RRTMG_AERO_D01 generally outperforms the other SW radiation schemes to simulate global horizontal irradiance under all-sky condition [RMSE = 235 W m−2 (19%); MAE = 172 W m−2 (14%)] and also under cloudy skies. Moreover, RRTMG_AERO_D01 shows the best performance on a seasonal scale. Both the RRTMG_AERO and Dudhia experiments indicate a good performance under clear skies. However, the sensitivity study of different SW radiation schemes in the WRF-Solar model suggests that RRTMG_AERO gives better results. Therefore, it is recommended that it be used for solar irradiance forecasts over Ghana and the southern part of Burkina Faso

    Hourly global horizontal irradiance over West Africa: A case study of one-year satellite- and reanalysis-derived estimates vs. in situ measurements

    Get PDF
    Estimates of global horizontal irradiance (GHI) from reanalysis and satellite-based data are the most important information for the design and monitoring of PV systems in Africa, but their quality is unknown due to the lack of in situ measurements. In this study, we evaluate the performance of hourly GHI from state-of-the-art reanalysis and satellite-based products (ERA5, MERRA-2, CAMS, and SARAH-2) with 37 quality-controlled in situ measurements from novel meteorological networks established in Burkina Faso and Ghana under different weather conditions for the year 2020. The effects of clouds and aerosols are also considered in the analysis by using common performance measures for the main quality attributes and a new overall performance value for the joint assessment. The results show that satellite data performs better than reanalysis data under different atmospheric conditions. Nevertheless, both data sources exhibit significant bias of more than 150 W/m2 in terms of RMSE under cloudy skies compared to clear skies. The new measure of overall performance clearly shows that the hourly GHI derived from CAMS and SARAH-2 could serve as viable alternative data for assessing solar energy in the different climatic zones of West Africa

    Irradiance and cloud optical properties from solar photovoltaic systems

    Get PDF
    Solar photovoltaic power output is modulated by atmospheric aerosols and clouds and thus contains valuable information on the optical properties of the atmosphere. As a ground-based data source with high spatiotemporal resolution it has great potential to complement other ground-based solar irradiance measurements as well as those of weather models and satellites, thus leading to an improved characterisation of global horizontal irradiance. In this work several algorithms are presented that can retrieve global tilted and horizontal irradiance and atmospheric optical properties from solar photovoltaic data and/or pyranometer measurements. Specifically, the aerosol (cloud) optical depth is inferred during clear sky (completely overcast) conditions. The method is tested on data from two measurement campaigns that took place in AllgĂ€u, Germany in autumn 2018 and summer 2019, and the results are compared with local pyranometer measurements as well as satellite and weather model data. Using power data measured at 1 Hz and averaged to 1 minute resolution, the hourly global horizontal irradiance is extracted with a mean bias error compared to concurrent pyranometer measurements of 11.45 W m−2, averaged over the two campaigns, whereas for the retrieval using coarser 15 minute power data the mean bias error is 16.39 W m−2. During completely overcast periods the cloud optical depth is extracted from photovoltaic power using a lookup table method based on a one-dimensional radiative transfer simulation, and the results are compared to both satellite retrievals as well as data from the COSMO weather model. Potential applications of this approach for extracting cloud optical properties are discussed, as well as certain limitations, such as the representation of 3D radiative effects that occur under broken cloud conditions. In principle this method could provide an unprecedented amount of ground-based data on both irradiance and optical properties of the atmosphere, as long as the required photovoltaic power data are available and are properly pre-screened to remove unwanted artefacts in the signal. Possible solutions to this problem are discussed in the context of future work

    Research–Practice–Collaborations in Engineering: Commentary on “Research–Practice–Collaborations in International Sustainable Development and Knowledge Production—Reflections from a Political-Economic Perspective”

    No full text
    In her recent article, Bender discusses several aspects of research–practice–collaborations (RPCs). In this commentary, we apply Bender's arguments to experiences in engineering research and development (R&D). We investigate the influence of interaction with practice partners on relevance, credibility, and legitimacy in the special engineering field of product development and analyze which methodological approaches are already being pursued for dealing with diverging interests and asymmetries and which steps will be necessary to include interests of civil society beyond traditional customer relations.Dans son article rĂ©cent, Bender traite plusieurs aspects des collaborations entre recherche et pratique (CRP, autrement connues comme « recherche collaborative» ou « recherche-action»). Dans ce commentaire, nous appliquons les arguments de Bender aux expĂ©riences dans le milieu de la recherche et dĂ©veloppement (R&D) en ingĂ©nierie. Nous investiguons l’influence des interactions avec les partenaires de recherche sur la relevance, la crĂ©dibilitĂ©, et la lĂ©gitimitĂ© dans le dĂ©veloppement de produits, qui est un des domaines spĂ©cifiques de l’ingĂ©nierie. Nous analysons quels approches mĂ©thodologiques ont dĂ©jĂ  Ă©tĂ© poursuivis afin de gĂ©rer des intĂ©rĂȘts divergents et des asymĂ©tries; et quels pas seront nĂ©cessaires afin d’y inclure les intĂ©rĂȘts de la sociĂ©tĂ© civile, au-delĂ  des relations clients traditionnels

    Heterogeneous chemistry in the tropopause region: impact of aircraft emissions

    No full text
    This thesis contributes to a better understanding of the effect of heterogeneous chemistry on ozone in the tropopause region. As part of the German research project ALTO, it especially focuses on the impact of aircraft emissions on heterogeneous ozone chemistry in this region. This is an important question as ozone is a strong greenhouse gas, whose radiative effect, is strongest near the tropopause. In general, the treatment of heterogeneous processes on background and aviation-produced particles requires the consideration of processes ranging from nanometer to continental scale. For this reason the present modeling work includes a treatment of small scale processes as well as the development and subsequent application of parameterisations. Three numerical trajectory box models considering highly detailed microphysical and chemical processes have been developed: (a) an aircraft plume model including coagulation, chemistry and plume dilution, (b) a particle-size resolved microphysical box model and, (c) a comprehensive photo-chemical box model
    • 

    corecore