31 research outputs found

    3D bioprinted alginate-gelatin hydrogel patches containing cardiac spheroids recover heart function in a mouse model of myocardial infarction

    Get PDF
    Epicardial transplantation of 3D bioprinted patches represents a promising protective strategy against infarction-induced myocardial damage. We previously showed that 3D bioprinted tissues containing cardiac spheroids [in alginate/gelatin (AlgGel) hydrogels] promoted cell viability/function and endothelial cell tubular self-assembly. Here, we hypothesise that bioprinted cardiac spheroid patches improve cardiac function after myocardial infarction (MI). To determine treatment effects of hydrogel alone or with cells, MI mice were transplanted with: (i) AlgGel acellular patches, (ii) AlgGel with freely suspended cardiac cells, (iii) AlgGel with cardiac spheroids. We included control MI mice (no treatment) and mice undergoing sham surgery. We performed measurements to 28 days including echocardiography, flow cytometry and transcriptomic analyses. Our results measured median baseline (pre-surgery) left ventricular ejection fraction (LVEF%) for all mice at 66%. Post-surgery, LVEF% was 58% for Sham (non-infarcted) and 41% for MI (no treatment) mice. Patch transplantation increased LVEF%: 55% (acellular; p = 0.012), 59% (cells; p = 0.106), 64% (spheroids; p = 0.010). Flow cytometry demonstrated host cardiac tissue immune cell population changes with treatments. RNAseq transcriptomes demonstrated similar gene expression profiles for Sham and mice treated with cardiac spheroid patches. Extrusion 3D bioprinting permits hydrogel patch generation even preserving microtissue cardiac spheroids directly suspended in the bioink. Inflammatory and genetic mechanisms may play important roles in regulating host responses after patch transplantation in infarcted hearts. Future studies are needed to elucidate the possible immune cell and gene expression-related molecular mechanisms underlying these initial findings

    Activated Protein C Protects against Murine Contact Dermatitis by Suppressing Protease-Activated Receptor 2

    No full text
    Atopic dermatitis (AD) is a chronic inflammatory skin disease associated with excessive inflammation and defective skin barrier function. Activated protein C (APC) is a natural anticoagulant with anti-inflammatory and barrier protective functions. However, the effect of APC on AD and its engagement with protease activated receptor (PAR)1 and PAR2 are unknown. Methods: Contact hypersensitivity (CHS), a model for human AD, was induced in PAR1 knockout (KO), PAR2KO and matched wild type (WT) mice using 2,4-dinitrofluorobenzene (DNFB). Recombinant human APC was administered into these mice as preventative or therapeutic treatment. The effect of APC and PAR1KO or PARKO on CHS was assessed via measurement of ear thickness, skin histologic changes, inflammatory cytokine levels, Th cell phenotypes and keratinocyte function. Results: Compared to WT, PAR2KO but not PAR1KO mice displayed less severe CHS when assessed by ear thickness; PAR1KO CHS skin had less mast cells, lower levels of IFN-γ, IL-4, IL-17 and IL-22, and higher levels of IL-1β, IL-6 and TGF-β1, whereas PAR2KO CHS skin only contained lower levels of IL-22 and IgE. Both PAR1KO and PAR2KO spleen cells had less Th1/Th17/Th22/Treg cells. In normal skin, PAR1 was present at the stratum granulosum and spinosum, whereas PAR2 at the upper layers of the epidermis. In CHS, however, the expression of PAR1 and PAR2 were increased and spread to the whole epidermis. In vitro, compared to WT cells, PAR1KO keratinocytes grew much slower, had a lower survival rate and higher para permeability, while PAR2KO cells grew faster, were resistant to apoptosis and para permeability. APC inhibited CHS as a therapeutic but not as a preventative treatment only in WT and PAR1KO mice. APC therapy reduced skin inflammation, suppressed epidermal PAR2 expression, promoted keratinocyte growth, survival, and barrier function in both WT and PAR1KO cells, but not in PAR2KO cells. Conclusions: APC therapy can mitigate CHS. Although APC acts through both PAR1 and PAR2 to regulate Th and mast cells, suppression of clinical disease in mice is achieved mainly via inhibition of PAR2 alone. Thus, APC may confer broad therapeutic benefits as a disease-modifying treatment for AD

    Inflammation in Chronic Wounds

    No full text
    Non-healing chronic wounds present a major biological, psychological, social, and financial burden on both individual patients and the broader health system. Pathologically extensive inflammation plays a major role in the disruption of the normal healing cascade. The causes of chronic wounds (venous, arterial, pressure, and diabetic ulcers) can be examined through a juxtaposition of normal healing and the rogue inflammatory response created by the common components within chronic wounds (ageing, hypoxia, ischaemia-reperfusion injury, and bacterial colonisation). Wound bed care through debridement, dressings, and antibiotics currently form the basic mode of treatment. Despite recent setbacks, pharmaceutical adjuncts form an interesting area of research

    The Role of Th-17 Cells and γδ T-Cells in Modulating the Systemic Inflammatory Response to Severe Burn Injury

    No full text
    Burns are a global public health problem, accounting for an estimated 265,000 deaths annually. Inflammation is essential in supplying the growth factors, cytokines and chemokines needed to recruit T-cells and myeloid cells to the site of a burn injury for wound healing. However, major burns generate a marked pathophysiological inflammatory response through a widespread release of abundant pro-inflammatory mediators that predispose patients to a systemic inflammatory response syndrome, sepsis and multi-organ failure. Recently, there has been promising investigation into the role of γδ T-cells and Th-17 cells in the regulation and propagation of this inflammatory response. This study reviews the current literature on the post-burn immune response

    Printability, durability, contractility and vascular network formation in 3D bioprinted cardiac endothelial cells using alginate-gelatin hydrogels

    No full text
    BACKGROUND: 3D bioprinting cardiac patches for epicardial transplantation is a promising approach for myocardial regeneration. Challenges remain such as quantifying printability, determining the ideal moment to transplant and promoting vascularisation within bioprinted patches. We aimed to evaluate 3D bioprinted cardiac patches for printability, durability in culture, cell viability and endothelial cell structural self-organisation into networks. METHODS: We evaluated 3D-bioprinted double-layer patches using alginate/gelatine (AlgGel) hydrogels and three extrusion bioprinters (REGEMAT3D; INVIVO; BIO X). Bioink contained either neonatal mouse cardiac cell spheroids or free (not-in-spheroid) human coronary artery endothelial cells with fibroblasts, mixed with AlgGel. To test effects on durability, some patches were bioprinted as a single layer only, cultured under minimal movement conditions or had added fibroblast-derived extracellular matrix hydrogel (AlloECM). Controls included acellular AlgGel and gelatin methacryloyl (GELMA) patches. RESULTS: Printability was similar across bioprinters. For AlgGel compared to GELMA: resolutions were similar (200-700μm line diameters), printing accuracy was 45% and 25%, respectively (AlgGel was 1.7x more accurate;p<0.05), shape fidelity was 92% (AlgGel) and 96% (GELMA);p=0.36. For durability, AlgGel patch median survival in culture was 14 days (IQR:10-27) overall which was not significantly affected by bioprinting system or cellular content in patches. We identified three factors which reduced durability in culture: 1) bioprinting one layer depth patches (instead of two layers); 2) movement disturbance to patches in media; 3) the addition of AlloECM to AlgGel. Cells were viable after bioprinting followed by 28 days in culture and all BIO X-bioprinted mouse cardiac cell spheroid patches presented contractile activity starting between day 7 and 13 after bioprinting. At day 28, endothelial cells in hydrogel displayed organisation into endothelial network-like structures. CONCLUSIONS: AlgGel-based 3D bioprinted heart patches permit cardiomyocyte contractility and endothelial cell structural self-organisation. After bioprinting, a period of 2 weeks' maturation in culture prior to transplantation may be optimal, allowing for a degree of tissue maturation but before many patches start to lose integrity. We quantify AlgGel printability and present novel factors which reduce AlgGel patch durability (layer number, movement and the addition of AlloECM) and factors which had minimal effect on durability (bioprinting system and cellular patch content)

    Overexpression of PsnSuSy1, 2 genes enhances secondary cell wall thickening, vegetative growth, and mechanical strength in transgenic tobacco

    No full text
    Key message Two homologs PsnSuSy1 and PsnSuSy2 from poplar played largely similar but little distinct roles in modulating sink strength, accelerating vegetative growth and modifying secondary growth of plant. Co-overexpression of them together resulted in small but perceptible additive effects. Abstract Sucrose synthase (SuSy) acts as a crucial determinant of sink strength by controlling the conversion of sucrose into UDP-glucose, which is not only the sole precursor for cellulose biosynthesis but also an extracellular signaling molecule for plants growth. Therefore, modification of SuSy activity in plants is of utmost importance. We have isolated two SuSy genes from poplar, PsnSuSy1 and PsnSuSy2, which were preferentially expressed in secondary xylem/phloem. To investigate their functions, T2 tobacco transgenic lines of PsnSuSy1 and PsnSuSy2 were generated and then crossed to generate PsnSuSy1/PsnSuSy2 dual overexpression transgenic lines. SuSy activities in all lines were significantly increased though PsnSuSy1/PsnSuSy2 lines only exhibited slightly higher SuSy activities than either PsnSuSy1 or PsnSuSy2 lines. The significantly increased fructose and glucose, engendered by augmented SuSy activities, caused the alternations of many physiological, biochemical measures and phenotypic traits that include accelerated vegetative growth, thickened secondary cell wall, and increased stem breaking force, accompanied with altered expression levels of related pathway genes. The correlation relationships between SuSy activities and many of these traits were statistically significant. However, differences of almost all traits among three types of transgenic lines were insignificant. These findings clearly demonstrated that PsnSuSy1 and PsnSuSy2 had similar but little distinct functions and insubstantial additive effects on modulating sink strength and affecting allocation of carbon elements among secondary cell wall components
    corecore