53 research outputs found

    Deletion of methylglyoxal synthase gene (mgsA) increased sugar co-metabolism in ethanol-producing Escherichia coli

    Get PDF
    The use of lignocellulose as a source of sugars for bioproducts requires the development of biocatalysts that maximize product yields by fermenting mixtures of hexose and pentose sugars to completion. In this study, we implicate mgsA encoding methylglyoxal synthase (and methylglyoxal) in the modulation of sugar metabolism. Deletion of this gene (strain LY168) resulted in the co-metabolism of glucose and xylose, and accelerated the metabolism of a 5-sugar mixture (mannose, glucose, arabinose, xylose and galactose) to ethanol

    The Netherlands:From diversity celebration to a colorblind approach

    Get PDF

    Stress modulation as a means to improve yeasts for lignocellulose bioconversion

    Get PDF
    The second-generation (2G) fermentation environment for lignocellulose conversion presents unique challenges to the fermentative organism that do not necessarily exist in other industrial fermentations. While extreme osmotic, heat, and nutrient starvation stresses are observed in sugar- and starch-based fermentation environments, additional pre-treatment-derived inhibitor stress, potentially exacerbated by stresses such as pH and product tolerance, exist in the 2G environment. Furthermore, in a consolidated bioprocessing (CBP) context, the organism is also challenged to secrete enzymes that may themselves lead to unfolded protein response and other stresses. This review will discuss responses of the yeast Saccharomyces cerevisiae to 2G-specific stresses and stress modulation strategies that can be followed to improve yeasts for this application. We also explore published –omics data and discuss relevant rational engineering, reverse engineering, and adaptation strategies, with the view of identifying genes or alleles that will make positive contributions to the overall robustness of 2G industrial strains
    corecore