4 research outputs found

    Cross-species comparative analysis of Dicer proteins during Sindbis virus infection

    Get PDF
    In plants and invertebrates RNA silencing is a major defense mechanism against virus infections. The first event in RNA silencing is dicing of long double stranded RNAs into small interfering RNAs (siRNAs). The Dicer proteins involved in this process are phylogenetically conserved and have the same domain organization. Accordingly, the production of viral derived siRNAs has also been observed in the mouse, but only in restricted cell types. To gain insight on this restriction, we compare the dicing activity of human Dicer and fly Dicer-2 in the context of Sindbis virus (SINV) infection. Expression of human Dicer in flies inefficiently rescues the production of viral siRNAs but confers some protection against SINV. Conversely, expression of Dicer-2 in human cells allows the production of viral 21 nt small RNAs. However, this does not confer resistance to viral infection, but on the contrary results in stronger accumulation of viral RNA. We further show that Dicer-2 expression in human cells perturbs interferon (IFN) signaling pathways and antagonizes protein kinase R (PKR)-mediated antiviral immunity. Overall, our data suggest that a functional incompatibility between the Dicer and IFN pathways explains the predominance of the IFN response in mammalian somatic cells

    In Drosophila melanogaster the COM Locus Directs the Somatic Silencing of Two Retrotransposons through both Piwi-Dependent and -Independent Pathways

    Get PDF
    BACKGROUND: In the Drosophila germ line, repeat-associated small interfering RNAs (rasiRNAs) ensure genomic stability by silencing endogenous transposable elements. This RNA silencing involves small RNAs of 26-30 nucleotides that are mainly produced from the antisense strand and function through the Piwi protein. Piwi belongs to the subclass of the Argonaute family of RNA interference effector proteins, which are expressed in the germline and in surrounding somatic tissues of the reproductive apparatus. In addition to this germ-line expression, Piwi has also been implicated in diverse functions in somatic cells. PRINCIPAL FINDINGS: Here, we show that two LTR retrotransposons from Drosophila melanogaster, ZAM and Idefix, are silenced by an RNA silencing pathway that has characteristics of the rasiRNA pathway and that specifically recognizes and destroys the sense-strand RNAs of the retrotransposons. This silencing depends on Piwi in the follicle cells surrounding the oocyte. Interestingly, this silencing is active in all the somatic tissues examined from embryos to adult flies. In these somatic cells, while the silencing still involves the strict recognition of sense-strand transcripts, it displays the marked difference of being independent of the Piwi protein. Finally, we present evidence that in all the tissues examined, the repression is controlled by the heterochromatic COM locus. CONCLUSION: Our data shed further light on the silencing mechanism that acts to target Drosophila LTR retrotransposons in somatic cells throughout fly development. They demonstrate that different RNA silencing pathways are involved in ovarian versus other somatic tissues, since Piwi is necessary for silencing in the former tissues but is dispensable in the latter. They further demonstrate that these pathways are controlled by the heterochromatic COM locus which ensures the overall protection of Drosophila against the detrimental effects of random retrotransposon mobilization

    Sequence-independent characterization of viruses based on the pattern of viral small RNAs produced by the host

    Get PDF
    Virus surveillance in vector insects is potentially of great benefit to public health. Large-scale sequencing of small and long RNAs has previously been used to detect viruses, but without any formal comparison of different strategies. Furthermore, the identification of viral sequences largely depends on similarity searches against reference databases. Here, we developed a sequence-independent strategy based on virus-derived small RNAs produced by the host response, such as the RNA interference pathway. In insects, we compared sequences of small and long RNAs, demonstrating that viral sequences are enriched in the small RNA fraction. We also noted that the small RNA size profile is a unique signature for each virus and can be used to identify novel viral sequences without known relatives in reference databases. Using this strategy, we characterized six novel viruses in the viromes of laboratory fruit flies and wild populations of two insect vectors: mosquitoes and sandflies. We also show that the small RNA profile could be used to infer viral tropism for ovaries among other aspects of virus biology. Additionally, our results suggest that virus detection utilizing small RNAs can also be applied to vertebrates, although not as efficiently as to plants and insects.A correction has been published: Nucleic Acids Research, Volume 44, Issue 7, 20 April 2016, Pages 3477–3478, https://doi.org/10.1093/nar/gkw04
    corecore