43 research outputs found
Rapid diagnosis of duck Tembusu virus and goose astrovirus with TaqMan-based duplex real-time PCR
The mixed infection of duck Tembusu virus (DTMUV) and goose astrovirus (GoAstV) is an important problem that endangers the goose industry. Although quantitative PCR has been widely used in monitoring these two viruses, there is no reliable method to detect them at the same time. In this study, by analyzing the published genomes of DTMUV and goose astrovirus genotype 2 (GoAstV-2) isolated in China, we found that both viruses have high conservation, showing 96.5 to 99.5% identities within different strains of DTMUV and GoAstV, respectively. Subsequently, PCR primers and TaqMan probes were designed to identify DTMUV and GoAstV-2, and different fluorescent reporters were given to two probes for differential diagnosis. Through the optimization and verification, this study finally developed a duplex TaqMan qPCR method that can simultaneously detect the above two viruses. The lower limits of detection were 100 copies/μL and 10 copies/μL for DTMUV and GoAstV-2 under optimal condition. The assay was also highly specific in detecting one or two viruses in various combinations in specimens, and provide tool for clinical diagnosis of mixed infections of viruses in goose
Anti-atherosclerosis mechanisms associated with regulation of non-coding RNAs by active monomers of traditional Chinese medicine
Atherosclerosis is the leading cause of numerous cardiovascular diseases with a high mortality rate. Non-coding RNAs (ncRNAs), RNA molecules that do not encode proteins in human genome transcripts, are known to play crucial roles in various physiological and pathological processes. Recently, researches on the regulation of atherosclerosis by ncRNAs, mainly including microRNAs, long non-coding RNAs, and circular RNAs, have gradually become a hot topic. Traditional Chinese medicine has been proved to be effective in treating cardiovascular diseases in China for a long time, and its active monomers have been found to target a variety of atherosclerosis-related ncRNAs. These active monomers of traditional Chinese medicine hold great potential as drugs for the treatment of atherosclerosis. Here, we summarized current advancement of the molecular pathways by which ncRNAs regulate atherosclerosis and mainly highlighted the mechanisms of traditional Chinese medicine monomers in regulating atherosclerosis through targeting ncRNAs
Exercise ameliorates the FGF21–adiponectin axis impairment in diet-induced obese mice
Objective: The protective effects of exercise against glucose dysmetabolism have been generally reported. However, the mechanism by which exercise improves glucose homeostasis remains poorly understood. The FGF21–adiponectin axis participates in the regulation of glucose metabolism. Elevated levels of FGF21 and decreased levels of adiponectin in obesity indicate FGF21–adiponectin axis dysfunction. Hence, we investigated whether exercise could improve the FGF21–adiponectin axis impairment and ameliorate disturbed glucose metabolism in diet-induced obese mice.
Methods: Eight-week-old C57BL/6J mice were randomly assigned to three groups: low-fat diet control group, high-fat diet group and high-fat diet plus exercise group. Glucose metabolic parameters, the ability of FGF21 to induce adiponectin, FGF21 receptors and co-receptor levels and adipose tissue inflammation were evaluated after 12 weeks of intervention.
Results: Exercise training led to reduced levels of fasting blood glucose and insulin, improved glucose tolerance and better insulin sensitivity in high-fat diet-induced obese mice. Although serum FGF21 levels were not significantly changed, both total and high-molecular-weight adiponectin concentrations were markedly enhanced by exercise. Importantly, exercise protected against high-fat diet-induced impaired ability of FGF21 to stimulate adiponectin secretion. FGF21 co-receptor, β-klotho, as well as receptors, FGFR1 and FGFR2, were upregulated by exercise. We also found that exercise inhibited adipose tissue inflammation, which may contribute to the improvement in the FGF21–adiponectin axis impairment.
Conclusions: Our data indicate exercise protects against high-fat diet-induced FGF21–adiponectin axis impairment, and may thereby exert beneficial effects on glucose metabolism
A review of Phyllanthus urinaria L. in the treatment of liver disease: viral hepatitis, liver fibrosis/cirrhosis and hepatocellular carcinoma
Due to the pathological production of liver disease in utility particularly complexity, the morbidity and mortality of liver disease including viral hepatitis, liver fibrosis/cirrhosis and hepatocellular carcinoma (HCC) are rapidly increasing worldwide. Considering its insidious onset, rapid progression and drug resistance, finding an effective therapy is particularly worthwhile. Phyllanthus urinaria L. (P. urinaria), an ethnic medicine, can be applied at the stages of viral hepatitis, liver fibrosis/cirrhosis and HCC, which demonstrates great potential in the treatment of liver disease. Currently, there are numerous reports on the application of P. urinaria in treating liver diseases, but a detailed analysis of its metabolites and a complete summary of its pharmacological mechanism are still scarce. In this review, the phytochemical metabolites and ethnopharmacological applications of P. urinaria are summarized. Briefly, P. urinaria mainly contains flavonoids, lignans, tannins, phenolic acids, terpenoids and other metabolites. The mechanisms of P. urinaria are mainly reflected in reducing surface antigen secretion and interfering with DNA polymerase synthesis for anti-viral hepatitis activity, reducing hepatic stellate cells activity, inflammation and oxidative stress for anti-liver fibrosis/cirrhosis activity, as well as preventing tumor proliferation, invasion and angiogenesis for anti-HCC activity via relevant signaling pathways. Accordingly, this review provides insights into the future application of natural products in the trilogy of liver diseases and will provide a scientific basis for further research and rational utilization of P. urinaria
Limb development genes underlie variation in human fingerprint patterns
Fingerprints are of long-standing practical and cultural interest, but little is known about the mechanisms that underlie their variation. Using genome-wide scans in Han Chinese cohorts, we identified 18 loci associated with fingerprint type across the digits, including a genetic basis for the long-recognized “pattern-block” correlations among the middle three digits. In particular, we identified a variant near EVI1 that alters regulatory activity and established a role for EVI1 in dermatoglyph patterning in mice. Dynamic EVI1 expression during human development supports its role in shaping the limbs and digits, rather than influencing skin patterning directly. Trans-ethnic meta-analysis identified 43 fingerprint-associated loci, with nearby genes being strongly enriched for general limb development pathways. We also found that fingerprint patterns were genetically correlated with hand proportions. Taken together, these findings support the key role of limb development genes in influencing the outcome of fingerprint patterning
Improvement of Teaching-Learning-Based-Optimization
Teaching-Learning-Based-Optimization is an optimization algorithm that simulates the teaching process. In the standard Teaching-Learning-Based-Optimization there are some problems such as precocity and low optimization accuracy. Through daily discovery, students’ learning effect is better when there are exercise lessons than when there are no exercise lessons. Students who study toward teacher on one’s own learn better than students who do not. Therefore, this paper proposes a teaching mode that combines exercise lessons and one-to-one to improve the Teaching-Learning-Based-Optimization
Research on dynamic synergistic scale inhibition performance and mechanisms of ESA/IA/AMPS copolymer with electrostatic field
Dynamic scale inhibition of epoxysuccinic acid/itaconic acid/2-acrylamido-2-methyl propanesulfonic acid (ESA/IA/AMPS) copolymer with electrostatic field was studied via a dynamic simulation device. CaCO3 morphology and crystal form were characterized by scanning electron microscope (SEM) and X-ray diffraction (XRD). The results show an obvious synergistic effect between the electrostatic field and ESA/IA/AMPS copolymer in a dynamic scale inhibition test. The synergism scale inhibition rate was 95.85%, which is 12.94% higher when compared with the copolymer alone. SEM and XRD analyses indicate that the electrostatic field facilitated the formation of aragonite CaCO3. CaCO3 scale formation in a blank water sample consisted of 83.8% calcite and 16.2% aragonite, while CaCO3 scale formation from a water sample treated with an electrostatic field consisted of 95.5% aragonite and 4.5% calcite. The CaCO3 scale formed in the presence of the copolymer and formed under the synergistic effect both consisted of 100% aragonite. However, CaCO3 crystal particles that formed under the synergistic effect were much smaller and more dispersed
Attention-Based Spatial–Temporal Convolution Gated Recurrent Unit for Traffic Flow Forecasting
Accurate traffic flow forecasting is very important for urban planning and traffic management. However, this is a huge challenge due to the complex spatial–temporal relationships. Although the existing methods have researched spatial–temporal relationships, they neglect the long periodic aspects of traffic flow data, and thus cannot attain a satisfactory result. In this paper, we propose a novel model Attention-Based Spatial–Temporal Convolution Gated Recurrent Unit (ASTCG) to solve the traffic flow forecasting problem. ASTCG has two core components: the multi-input module and the STA-ConvGru module. Based on the cyclical nature of traffic flow data, the data input to the multi-input module are divided into three parts, near-neighbor data, daily-periodic data, and weekly-periodic data, thus enabling the model to better capture the time dependence. The STA-ConvGru module, formed by CNN, GRU, and attention mechanism, can capture both temporal and spatial dependencies of traffic flow. We evaluate our proposed model using real-world datasets and experiments show that the ASTCG model outperforms the state-of-the-art model
Study on Climate and Grassland Fire in HulunBuir, Inner Mongolia Autonomous Region, China
Grassland fire is one of the most important disturbance factors of the natural ecosystem. Climate factors influence the occurrence and development of grassland fire. An analysis of the climate conditions of fire occurrence can form the basis for a study of the temporal and spatial variability of grassland fire. The purpose of this paper is to study the effects of monthly time scale climate factors on the occurrence of grassland fire in HulunBuir, located in the northeast of the Inner Mongolia Autonomous Region in China. Based on the logistic regression method, we used the moderate-resolution imaging spectroradiometer (MODIS) active fire data products named thermal anomalies/fire daily L3 Global 1km (MOD14A1 (Terra) and MYD14A1 (Aqua)) and associated climate data for HulunBuir from 2000 to 2010, and established the model of grassland fire climate index. The results showed that monthly maximum temperature, monthly sunshine hours and monthly average wind speed were all positively correlated with the fire climate index; monthly precipitation, monthly average temperature, monthly average relative humidity, monthly minimum relative humidity and the number of days with monthly precipitation greater than or equal to 5 mm were all negatively correlated with the fire climate index. We used the active fire data from 2011 to 2014 to validate the fire climate index during this time period, and the validation result was good (Pearson’s correlation coefficient was 0.578), which showed that the fire climate index model was suitable for analyzing the occurrence of grassland fire in HulunBuir. Analyses were conducted on the temporal and spatial distribution of the fire climate index from January to December in the years 2011–2014; it could be seen that from March to May and from September to October, the fire climate index was higher, and that the fire climate index of the other months is relatively low. The zones with higher fire climate index are mainly distributed in Xin Barag Youqi, Xin Barag Zuoqi, Zalantun Shi, Oroqen Zizhiqi, and Molidawa Zizhiqi; the zones with medium fire climate index are mainly distributed in Chen Barag Qi, Ewenkizu Zizhiqi, Manzhouli Shi, and Arun Qi; and the zones with lower fire climate index are mainly distributed in Genhe Shi, Ergun city, Yakeshi Shi, and Hailar Shi. The results of this study will contribute to the quantitative assessment and management of early warning and forecasting for mid-to long-term grassland fire risk in HulunBuir
Mechanical and biological properties of hydroxyapatite/tricalcium phosphate scaffolds coated with poly(lactic-co-glycolic acid)
Regeneration of bone, cartilage, and osteochondral tissues by tissue engineering has attracted intense attention due to its potential advantages over the traditional replacement of tissues with synthetic implants. Nevertheless, there is still a dearth of ideal or suitable scaffolds based on porous biomaterials and the present study was to develop and evaluate a useful porous composite scaffold system. Here, hydroxyapatite (HA)/ tricalcium phosphate (TCP) scaffolds (average pore size: 500 um; porosity: 87%) were prepared by a polyurethane (PU) foam replica method, followed by modification with infiltration and coating of poly(lactic-co-glycolic acid) (PLGA). The thermal shock resistance of the composite scaffolds was evaluated by measuring the compressive strength before and after quenching or freezing treatment. The porous structure (in terms of pore size, porosity and pore interconnectivity) of the composite scaffolds were examined. The penetration of the bone marrow stromal stem cells (BMSCs) into the scaffolds and the attachment of the cells onto the scaffolds were also investigated. It was shown that the PLGA incorporation in the HA/TCP scaffolds significantly increased the compressive strength up to 660 kPa and the residual compressive strength after the freezing treatment decreased to 160 kPa, which was however sufficient enough for the scaffolds to withstand subsequent cell culture procedures and a freezing drying process. On the other hand, the PLGA coating on the strut surfaces of the scaffolds was rather thin (< 5 um) and apparently porous, maintaining the high open porosity of the HA/TCP scaffolds, resulting in desirable migration and attachment of the bone marrow stromal stem cells, although a thicker PLGA coating would have imparted a higher compressive strength of the PLGA-coated porous HA/TCP composite scaffolds