66 research outputs found

    Cost-Effectiveness Evaluation Of Quadrivalent Influenza Vaccines For Seasonal Influenza Prevention: A Dynamic Modeling Study Of Canada And The United Kingdom

    Get PDF
    Background: The adoption of quadrivalent influenza vaccine (QIV) to replace trivalent influenza vaccine (TIV) in immunization programs is growing worldwide, thus helping to address the problem of influenza B lineage mismatch. However, the price per dose of QIV is higher than that of TIV. In such circumstances, cost-effectiveness analyses provide important and relevant information to inform national health recommendations and implementation decisions. This analysis assessed potential vaccine impacts and cost-effectiveness of a country-wide switch from TIV to QIV, in Canada and the UK, from a third-party payer perspective. Methods: An age-stratified, dynamic four-strain transmission model which incorporates strain interaction, transmission-rate seasonality and age-specific mixing in the population was used. Model input data were obtained from published literature and online databases. In Canada, we evaluated a switch from TIV to QIV in the entire population. For the UK, we considered two strategies: Children aged 2-17 years who receive the live-attenuated influenza vaccine (LAIV) switch to the quadrivalent formulation (QLAIV), while individuals aged > 18 years switch from TIV to QIV. Two different vaccination uptake scenarios in children (UK1 and UK2, which differ in the vaccine uptake level) were considered. Health and cost outcomes for both vaccination strategies, and the cost-effectiveness of switching from TIV/LAIV to QIV/QLAIV, were estimated from the payer perspective. For Canada and the UK, cost and outcomes were discounted using 5 % and 3.5 % per year, respectively. Results: Overall, in an average influenza season, our model predicts that a nationwide switch from TIV to QIV would prevent 4.6 % influenza cases, 4.9 % general practitioner (GP) visits, 5.7 % each of emergency room (ER) visits and hospitalizations, and 6.8 % deaths in Canada. In the UK (UK1/UK2), implementing QIV would prevent 1.4 %/1.8 % of influenza cases, 1.6 %/2.0 % each of GP and ER visits, 1.5 %/1.9 % of hospitalizations and 4.3 %/4.9 % of deaths. Discounted incremental cost-utility ratios of $7,961 and 7,989 pound/7,234 pound per quality-adjusted life-year (QALY) gained are estimated for Canada and the UK (UK1/UK2), both of which are well within their respective cost-effectiveness threshold values. Conclusions: Switching from TIV to QIV is expected to be a cost-effective strategy to further reduce the burden of influenza in both countries.GlaxoSmithKline Biologicals S

    Burden of Illness in UK Subjects with Reported Respiratory Infections Vaccinated or Unvaccinated against Influenza: A Retrospective Observational Study

    Get PDF
    <div><p>Objective</p><p>Detailed data are lacking on influenza burden in the United Kingdom (UK). The objective of this study was to estimate the disease burden associated with influenza-like illness (ILI) in the United Kingdom stratified by age, risk and influenza vaccination status.</p><p>Methods</p><p>This retrospective, cross-sectional, exploratory, observational study used linked data from the General Practice Research Database and the Hospital Episode Statistics databases to estimate resource use and cost associated with ILI in the UK.</p><p>Results</p><p>Data were included from 156,193 patients with ≥1 general practitioner visit with ILI. There were 21,518 high-risk patients, of whom 12,514 (58.2%) were vaccinated and 9,004 (41.8%) were not vaccinated, and 134,675 low-risk patients, of whom 17,482 (13.0%) were vaccinated and 117,193 (87.0%) were not vaccinated. High-risk vaccinated patients were older (p<0.001) and had more risk conditions (p<0.001). High-risk (odds ratio [OR] 2.16) or vaccinated (OR 1.19) patients had a higher probability of >1 general practitioner visit compared with low-risk and unvaccinated patients. Patients who were high-risk and vaccinated had a reduced risk of >1 general practitioner visit (OR 0.82; p<0.001). High-risk individuals who were also vaccinated had a lower probability of ILI-related hospitalisation than individuals who were high-risk or vaccinated alone (OR 0.59). In people aged ≥65 years, the mortality rate was lower in vaccinated than unvaccinated individuals (OR 0.75). The cost of ILI-related GP visits and hospital admissions in the UK over the study period in low-risk vaccinated patients was £27,391,142 and £141,932,471, respectively. In low-risk unvaccinated patients the corresponding values were £168,318,709 and £112,534,130, respectively.</p><p>Conclusions</p><p>Although vaccination rates in target groups have increased, many people are still not receiving influenza vaccination, and the burden of ILI in the United Kingdom remains substantial. Improving influenza vaccination uptake may have the potential to reduce this burden.</p></div

    Comparing Influenza Vaccine Efficacy Against Mismatched And Matched Strains: A Systematic Review And Meta-Analysis

    Get PDF
    Background: Influenza vaccines are most effective when the antigens in the vaccine match those of circulating strains. However, antigens contained in the vaccines do not always match circulating strains. In the present work we aimed to examine the vaccine efficacy (VE) afforded by influenza vaccines when they are not well matched to circulating strains. Methods: We identified randomized clinical trials (RCTs) through MEDLINE, EMBASE, the Cochrane Library, and references of included RCTs. RCTs reporting laboratory-confirmed influenza among healthy participants vaccinated with antigens of matching and non-matching influenza strains were included. Two independent reviewers screened citations/full-text articles, abstracted data, and appraised risk of bias. Conflicts were resolved by discussion. A random effects meta-analysis was conducted. VE was calculated using the following formula: (1 - relative risk x 100%). Results: We included 34 RCTs, providing data on 47 influenza seasons and 94,821 participants. The live-attenuated influenza vaccine (LAIV) showed significant protection against mismatched (six RCTs, VE 54%, 95% confidence interval (CI) 28% to 71%) and matched (seven RCTs, VE 83%, 95% CI 75% to 88%) influenza strains among children aged 6 to 36 months. Differences were observed between the point estimates for mismatched influenza A (five RCTs, VE 75%, 95% CI 41% to 90%) and mismatched influenza B (five RCTs, VE 42%, 95% CI 22% to 56%) estimates among children aged 6 to 36 months. The trivalent inactivated vaccine (TIV) also afforded significant protection against mismatched (nine RCTs, VE 52%, 95% CI 37% to 63%) and matched (eight RCTs, VE 65%, 95% CI 54% to 73%) influenza strains among adults. Numerical differences were observed between the point estimates for mismatched influenza A (five RCTs, VE 64%, 95% CI 23% to 82%) and mismatched influenza B (eight RCTs, VE 52%, 95% CI 19% to 72%) estimates among adults. Statistical heterogeneity was low (I-2 < 50%) across all meta-analyses, except for the LAIV meta-analyses among children (I-2 = 79%). Conclusions: The TIV and LAIV vaccines can provide cross protection against non-matching circulating strains. The point estimates for VE were different for matching versus non-matching strains, with overlapping CIs.Canadian Institutes for Health Research/Drug Safety and Effectiveness Network New Investigator Award in Knowledge Synthesi

    The crossroads of tradition and modern technology: integrative approaches to studying carnivores in low density ecosystems

    Get PDF
    The study of large carnivores in semi-arid ecosystems presents inherent challenges due to their low densities, extensive home ranges, and elusive nature. We explore the potential for the synthesis of traditional knowledge (i.e. art of tracking) and modern technology to address challenges in conservation and wildlife research in these challenging environments. Our research focuses on the African lion (Panthera leo) in the Central Kalahari region of Botswana as a model system to demonstrate the potential of this integrative approach. Combining GPS tracking and traditional San trackers’ expertise, we present two case studies: (1) the individual identification of lions via a combination of tracking and footprint analysis and (2) the monitoring of territorial behavior through a combination of GPS technology (i.e. GPS collars and handheld GPS devices) and non-invasive tracking. These approaches enhance our understanding of carnivore ecology as well as support conservation efforts by offering a non-invasive, cost-effective, and highly accurate means of monitoring populations. Our findings underscore the value of merging traditional tracking skills with contemporary analytical and technological developments to offer new insights into the ecology of carnivores in challenging environments. This approach not only improves data collection accuracy and efficiency but also fosters a deeper understanding of wildlife, ensuring the conservation and sustainable management of these species. Our work advocates for the inclusion of indigenous knowledge in conservation science, highlighting its relevance and applicability across various disciplines, thereby broadening the methodologies used to study wildlife, monitor populations, and inform conservation strategies

    Diagnosis of bipolar disorders and body mass index predict clustering based on similarities in cortical thickness-ENIGMA study in 2436 individuals

    Get PDF
    AIMS: Rates of obesity have reached epidemic proportions, especially among people with psychiatric disorders. While the effects of obesity on the brain are of major interest in medicine, they remain markedly under-researched in psychiatry. METHODS: We obtained body mass index (BMI) and magnetic resonance imaging-derived regional cortical thickness, surface area from 836 bipolar disorders (BD) and 1600 control individuals from 14 sites within the ENIGMA-BD Working Group. We identified regionally specific profiles of cortical thickness using K-means clustering and studied clinical characteristics associated with individual cortical profiles. RESULTS: We detected two clusters based on similarities among participants in cortical thickness. The lower thickness cluster (46.8% of the sample) showed thinner cortex, especially in the frontal and temporal lobes and was associated with diagnosis of BD, higher BMI, and older age. BD individuals in the low thickness cluster were more likely to have the diagnosis of bipolar disorder I and less likely to be treated with lithium. In contrast, clustering based on similarities in the cortical surface area was unrelated to BD or BMI and only tracked age and sex. CONCLUSIONS: We provide evidence that both BD and obesity are associated with similar alterations in cortical thickness, but not surface area. The fact that obesity increased the chance of having low cortical thickness could explain differences in cortical measures among people with BD. The thinner cortex in individuals with higher BMI, which was additive and similar to the BD-associated alterations, may suggest that treating obesity could lower the extent of cortical thinning in BD

    Mega-analysis of association between obesity and cortical morphology in bipolar disorders:ENIGMA study in 2832 participants

    Get PDF
    Background: Obesity is highly prevalent and disabling, especially in individuals with severe mental illness including bipolar disorders (BD). The brain is a target organ for both obesity and BD. Yet, we do not understand how cortical brain alterations in BD and obesity interact. Methods: We obtained body mass index (BMI) and MRI-derived regional cortical thickness, surface area from 1231 BD and 1601 control individuals from 13 countries within the ENIGMA-BD Working Group. We jointly modeled the statistical effects of BD and BMI on brain structure using mixed effects and tested for interaction and mediation. We also investigated the impact of medications on the BMI-related associations. Results: BMI and BD additively impacted the structure of many of the same brain regions. Both BMI and BD were negatively associated with cortical thickness, but not surface area. In most regions the number of jointly used psychiatric medication classes remained associated with lower cortical thickness when controlling for BMI. In a single region, fusiform gyrus, about a third of the negative association between number of jointly used psychiatric medications and cortical thickness was mediated by association between the number of medications and higher BMI. Conclusions: We confirmed consistent associations between higher BMI and lower cortical thickness, but not surface area, across the cerebral mantle, in regions which were also associated with BD. Higher BMI in people with BD indicated more pronounced brain alterations. BMI is important for understanding the neuroanatomical changes in BD and the effects of psychiatric medications on the brain.</p

    Principal component analysis as an efficient method for capturing multivariate brain signatures of complex disorders—ENIGMA study in people with bipolar disorders and obesity

    Get PDF
    Multivariate techniques better fit the anatomy of complex neuropsychiatric disorders which are characterized not by alterations in a single region, but rather by variations across distributed brain networks. Here, we used principal component analysis (PCA) to identify patterns of covariance across brain regions and relate them to clinical and demographic variables in a large generalizable dataset of individuals with bipolar disorders and controls. We then compared performance of PCA and clustering on identical sample to identify which methodology was better in capturing links between brain and clinical measures. Using data from the ENIGMA-BD working group, we investigated T1-weighted structural MRI data from 2436 participants with BD and healthy controls, and applied PCA to cortical thickness and surface area measures. We then studied the association of principal components with clinical and demographic variables using mixed regression models. We compared the PCA model with our prior clustering analyses of the same data and also tested it in a replication sample of 327 participants with BD or schizophrenia and healthy controls. The first principal component, which indexed a greater cortical thickness across all 68 cortical regions, was negatively associated with BD, BMI, antipsychotic medications, and age and was positively associated with Li treatment. PCA demonstrated superior goodness of fit to clustering when predicting diagnosis and BMI. Moreover, applying the PCA model to the replication sample yielded significant differences in cortical thickness between healthy controls and individuals with BD or schizophrenia. Cortical thickness in the same widespread regional network as determined by PCA was negatively associated with different clinical and demographic variables, including diagnosis, age, BMI, and treatment with antipsychotic medications or lithium. PCA outperformed clustering and provided an easy-to-use and interpret method to study multivariate associations between brain structure and system-level variables. Practitioner Points: In this study of 2770 Individuals, we confirmed that cortical thickness in widespread regional networks as determined by principal component analysis (PCA) was negatively associated with relevant clinical and demographic variables, including diagnosis, age, BMI, and treatment with antipsychotic medications or lithium. Significant associations of many different system-level variables with the same brain network suggest a lack of one-to-one mapping of individual clinical and demographic factors to specific patterns of brain changes. PCA outperformed clustering analysis in the same data set when predicting group or BMI, providing a superior method for studying multivariate associations between brain structure and system-level variables.</p

    Principal component analysis as an efficient method for capturing multivariate brain signatures of complex disorders—ENIGMA study in people with bipolar disorders and obesity

    Get PDF
    Multivariate techniques better fit the anatomy of complex neuropsychiatric disorders which are characterized not by alterations in a single region, but rather by variations across distributed brain networks. Here, we used principal component analysis (PCA) to identify patterns of covariance across brain regions and relate them to clinical and demographic variables in a large generalizable dataset of individuals with bipolar disorders and controls. We then compared performance of PCA and clustering on identical sample to identify which methodology was better in capturing links between brain and clinical measures. Using data from the ENIGMA-BD working group, we investigated T1-weighted structural MRI data from 2436 participants with BD and healthy controls, and applied PCA to cortical thickness and surface area measures. We then studied the association of principal components with clinical and demographic variables using mixed regression models. We compared the PCA model with our prior clustering analyses of the same data and also tested it in a replication sample of 327 participants with BD or schizophrenia and healthy controls. The first principal component, which indexed a greater cortical thickness across all 68 cortical regions, was negatively associated with BD, BMI, antipsychotic medications, and age and was positively associated with Li treatment. PCA demonstrated superior goodness of fit to clustering when predicting diagnosis and BMI. Moreover, applying the PCA model to the replication sample yielded significant differences in cortical thickness between healthy controls and individuals with BD or schizophrenia. Cortical thickness in the same widespread regional network as determined by PCA was negatively associated with different clinical and demographic variables, including diagnosis, age, BMI, and treatment with antipsychotic medications or lithium. PCA outperformed clustering and provided an easy-to-use and interpret method to study multivariate associations between brain structure and system-level variables. Practitioner Points: In this study of 2770 Individuals, we confirmed that cortical thickness in widespread regional networks as determined by principal component analysis (PCA) was negatively associated with relevant clinical and demographic variables, including diagnosis, age, BMI, and treatment with antipsychotic medications or lithium. Significant associations of many different system-level variables with the same brain network suggest a lack of one-to-one mapping of individual clinical and demographic factors to specific patterns of brain changes. PCA outperformed clustering analysis in the same data set when predicting group or BMI, providing a superior method for studying multivariate associations between brain structure and system-level variables.</p
    corecore