1,621 research outputs found
Recommended from our members
Occupational Cultures as a Challenge to Technological Innovation
This paper explains conflict over technological process innovation in cultural terms, drawing primarily on a case study of electric power distribution and strategies to automate its operation
Recommended from our members
Challenges to the Integration of Renewable Resources at High System Penetration
Successfully integrating renewable resources into the electric grid at penetration levels to meet a 33 percent Renewables Portfolio Standard for California presents diverse technical and organizational challenges. This report characterizes these challenges by coordinating problems in time and space, balancing electric power on a range of scales from microseconds to decades and from individual homes to hundreds of miles. Crucial research needs were identified related to grid operation, standards and procedures, system design and analysis, and incentives, and public engagement in each scale of analysis. Performing this coordination on more refined scales of time and space independent of any particular technology, is defined as a “smart grid.” “Smart” coordination of the grid should mitigate technical difficulties associated with intermittent and distributed generation, support grid stability and reliability, and maximize benefits to California ratepayers by using the most economic technologies, design and operating approaches
Recommended from our members
Diagnostic Applications for Micro-Synchrophasor Measurements
This report articulates and justifies the preliminary selection of diagnostic applications for data from micro-synchrophasors (µPMUs) in electric power distribution systems that will be further studied and developed within the scope of the three-year ARPA-e award titled Micro-synchrophasors for Distribution Systems
Recommended from our members
Every Moment Counts: Synchrophasors for Distribution Networks with Variable Resources
Chapter 34 in the textbook, "Renewable Energy Integration: Practical Management of Variability, Uncertainty and Flexibility
Recommended from our members
An Assessment of PIER Electric Grid Research 2003-2014 White Paper
This white paper describes the circumstances in California around the turn of the 21st century that led the California Energy Commission (CEC) to direct additional Public Interest Energy Research funds to address critical electric grid issues, especially those arising from integrating high penetrations of variable renewable generation with the electric grid. It contains an assessment of the beneficial science and technology advances of the resultant portfolio of electric grid research projects administered under the direction of the CEC by a competitively selected contractor, the University of California’s California Institute for Energy and the Environment, from 2003-2014
Recommended from our members
Open-Source, Open-Architecture SoftwarePlatform for Plug-InElectric Vehicle SmartCharging in California
This interdisciplinary eXtensible Building Operating System–Vehicles project focuses on controlling plug-in electric vehicle charging at residential and small commercial settings using a novel and flexible open-source, open-architecture charge communication and control platform. The platform provides smart charging functionalities and benefits to the utility, homes, and businesses.This project investigates four important areas of vehicle-grid integration research, integrating technical as well as social and behavioral dimensions: smart charging user needs assessment, advanced load control platform development and testing, smart charging impacts, benefits to the power grid, and smart charging ratepayer benefits
Recommended from our members
The Power Control Rack: A Modular Solution for Building Power Systems
LDRD proposal presentation to ETA ALD at LBNL. Proposing use of SST to create a modular efficient single point of common coupling for buildings
Recommended from our members
EcoBlock: Grid Impacts, Scaling, and Resilience
Widespread deployment of EcoBlocks has the potential to transform today's electricity system into one that is more resilient, flexible, efficient and sustainable. In this vision, the system will consist of self- su cient, renewable-powered, block-scale entities that can deliberately adjust their net power exchange and can optimize performance, maintain stability, support each other, or disconnect entirely from the grid as needed. This report is intended as an independent analysis of the potential relationships, both constructive and adverse, between EcoBlocks and the grid
- …