14 research outputs found

    Molecular basis of aortic diseases

    Full text link

    Clinical sequencing: is WGS the better WES?

    Get PDF
    Current clinical next-generation sequencing is done by using gene panels and exome analysis, both of which involve selective capturing of target regions. However, capturing has limitations in sufficiently covering coding exons, especially GC-rich regions. We compared whole exome sequencing (WES) with the most recent PCR-free whole genome sequencing (WGS), showing that only the latter is able to provide hitherto unprecedented complete coverage of the coding region of the genome. Thus, from a clinical/technical point of view, WGS is the better WES so that capturing is no longer necessary for the most comprehensive genomic testing of Mendelian disorders

    New insights into the performance of human whole-exome capture platforms

    Get PDF
    Whole exome sequencing (WES) is increasingly used in research and diagnostics. WES users expect coverage of the entire coding region of known genes as well as sufficient read depth for the covered regions. It is, however, unknown which recent WES platform is most suitable to meet these expectations. We present insights into the performance of the most recent standard exome enrichment platforms from Agilent, NimbleGen and Illumina applied to six different DNA samples by two sequencing vendors per platform. Our results suggest that both Agilent and NimbleGen overall perform better than Illumina and that the high enrichment performance of Agilent is stable among samples and between vendors, whereas NimbleGen is only able to achieve vendor- and sample-specific best exome coverage. Moreover, the recent Agilent platform overall captures more coding exons with sufficient read depth than NimbleGen and Illumina. Due to considerable gaps in effective exome coverage, however, the three platforms cannot capture all known coding exons alone or in combination, requiring improvement. Our data emphasize the importance of evaluation of updated platform versions and suggest that enrichment-free whole genome sequencing can overcome the limitations of WES in sufficiently covering coding exons, especially GC-rich regions, and in characterizing structural variant

    Variant filtering, digenic variants, and other challenges in clinical sequencing: a lesson from fibrillinopathies

    Get PDF
    Genome-scale high-throughput sequencing enables the detection of unprecedented numbers of sequence variants. Variant filtering and interpretation are facilitated by mutation databases, in silico tools, and population-based reference datasets such as ExAC/gnomAD, while variants are classified using the ACMG/AMP guidelines. These methods, however, pose clinically relevant challenges. We queried the gnomAD dataset for (likely) pathogenic variants in genes causing autosomal-dominant disorders. Furthermore, focusing on the fibrillinopathies Marfan syndrome (MFS) and congenital contractural arachnodactyly (CCA), we screened 500 genomes of our patients for co-occurring variants in FBN1 and FBN2. In gnomAD, we detected 2653 (likely) pathogenic variants in 253 genes associated with autosomal-dominant disorders, enabling the estimation of variant-filtering thresholds and disease predisposition/prevalence rates. In our database, we discovered two families with hitherto unreported co-occurrence of FBN1/FBN2 variants causing phenotypes with mixed or modified MFS/CCA clinical features. We show that (likely) pathogenic gnomAD variants may be more frequent than expected and are challenging to classify according to the ACMG/AMP guidelines as well as that fibrillinopathies are likely underdiagnosed and may co-occur. Consequently, selection of appropriate frequency cutoffs, recognition of digenic variants, and variant classification represent considerable challenges in variant interpretation. Neglecting these challenges may lead to incomplete or missed diagnoses

    Added Value of Clinical Sequencing: WGS-Based Profiling of Pharmacogenes

    No full text
    Although several pharmacogenetic (PGx) predispositions affecting drug efficacy and safety are well established, drug selection and dosing as well as clinical trials are often performed in a non-pharmacogenetically-stratified manner, ultimately burdening healthcare systems. Pre-emptive PGx testing offers a solution which is often performed using microarrays or targeted gene panels, testing for common/known PGx variants. However, as an added value, whole-genome sequencing (WGS) could detect not only disease-causing but also pharmacogenetically-relevant variants in a single assay. Here, we present our WGS-based pipeline that extends the genetic testing of Mendelian diseases with PGx profiling, enabling the detection of rare/novel PGx variants as well. From our in-house WGS (PCR-free 60Ă— PE150) data of 547 individuals we extracted PGx variants with drug-dosing recommendations of the Dutch Pharmacogenetics Working Group (DPWG). Furthermore, we explored the landscape of DPWG pharmacogenes in gnomAD and our in-house cohort as well as compared bioinformatic tools for WGS-based structural variant detection in CYP2D6. We show that although common/known PGx variants comprise the vast majority of detected DPWG pharmacogene alleles, for better precision medicine, PGx testing should move towards WGS-based approaches. Indeed, WGS-based PGx profiling is not only feasible and future-oriented but also the most comprehensive all-in-one approach without generating significant additional costs.ISSN:1422-006

    Precise breakpoint localization of large genomic deletions using PacBio and Illumina next-generation sequencers

    Full text link
    Herein we present the applicability of single-molecule (PacBio RS) and second-generation sequencing technology (Illumina) to the characterization of large genomic deletions. By testing samples previously characterized using a Sanger approach, our methods determined that both next-generation sequencing platforms were able to identify the position of deletion breakpoints. Our results point out various advantages of next-generation sequencing platforms when characterizing genomic deletions; however, special attention must be dedicated to identical sequences flanking the breakpoints, such as poly(N) motifs

    New insights into the performance of human whole-exome capture platforms

    No full text
    Whole exome sequencing (WES) is increasingly used in research and diagnostics. WES users expect coverage of the entire coding region of known genes as well as sufficient read depth for the covered regions. It is, however, unknown which recent WES platform is most suitable to meet these expectations. We present insights into the performance of the most recent standard exome enrichment platforms from Agilent, NimbleGen and Illumina applied to six different DNA samples by two sequencing vendors per platform. Our results suggest that both Agilent and NimbleGen overall perform better than Illumina and that the high enrichment performance of Agilent is stable among samples and between vendors, whereas NimbleGen is only able to achieve vendor- and sample-specific best exome coverage. Moreover, the recent Agilent platform overall captures more coding exons with sufficient read depth than NimbleGen and Illumina. Due to considerable gaps in effective exome coverage, however, the three platforms cannot capture all known coding exons alone or in combination, requiring improvement. Our data emphasize the importance of evaluation of updated platform versions and suggest that enrichment-free whole genome sequencing can overcome the limitations of WES in sufficiently covering coding exons, especially GC-rich regions, and in characterizing structural variants.ISSN:1362-4962ISSN:0301-561

    New insights into the performance of human whole-exome capture platforms.

    Get PDF
    Whole exome sequencing (WES) is increasingly used in research and diagnostics. WES users expect coverage of the entire coding region of known genes as well as sufficient read depth for the covered regions. It is, however, unknown which recent WES platform is most suitable to meet these expectations. We present insights into the performance of the most recent standard exome enrichment platforms from Agilent, NimbleGen and Illumina applied to six different DNA samples by two sequencing vendors per platform. Our results suggest that both Agilent and NimbleGen overall perform better than Illumina and that the high enrichment performance of Agilent is stable among samples and between vendors, whereas NimbleGen is only able to achieve vendor- and sample-specific best exome coverage. Moreover, the recent Agilent platform overall captures more coding exons with sufficient read depth than NimbleGen and Illumina. Due to considerable gaps in effective exome coverage, however, the three platforms cannot capture all known coding exons alone or in combination, requiring improvement. Our data emphasize the importance of evaluation of updated platform versions and suggest that enrichment-free whole genome sequencing can overcome the limitations of WES in sufficiently covering coding exons, especially GC-rich regions, and in characterizing structural variants
    corecore