4,489 research outputs found

    1-(4-Chloro-2-fluoro­phen­yl)-4-difluoro­methyl-3-methyl-1H-1,2,4-triazol-5(4H)-one

    Get PDF
    In the crystal structure of the title compound, C10H7ClF3N3O, pairs of mol­ecules are connected into dimers via pairs of C—H⋯O hydrogen bonds. The dihedral angle between the benzene ring and attached triazolone ring is 53.2 (1)°

    Analysis on the Applications of Information Technology in Mathematics Classroom Teaching and its Correlation with Students’ Mathematics Achievements in China

    Get PDF
    On account of the question of “how can teachers facilitate learning more efficiently with the help of information technology,” this research is going to probe into the application of information technology in mathematics classroom teaching and its correlation with students’ mathematics achievements in China. It is established in the data from “Research on the Relationship between Learning and Curriculum,” a program funded by Ministry of Education of China, that technology in mathematics education is important. Through the analysis of data, this research first describes how sampling teachers apply information technology in mathematics classroom teaching (including playing PPT lecture notes, using subject teaching software, and employing Internet in class) as well as the differences in the data among cities and schools. Besides, it also explores the correlation between how teachers apply information technology to the mathematics classroom teaching and students’ mathematics achievements

    Effectiveness and safety of transcatheter aortic valve replacement in elderly people with severe aortic stenosis with different types of heart failure.

    Get PDF
    Impaired left ventricular function is an independent predictor of adverse clinical outcomes in patients with aortic stenosis. The aim of this study is to evaluate the short-term changes of echocardiographic parameters, New York Heart Association (NYHA) class and B-type natriuretic peptide (BNP) level and adverse events amongst patients with heart failure (HF) after transcatheter aortic valve replacement (TAVR) procedure. This was a retrospective cohort study conducted at affiliated Yantai Yuhuangding Hospital of Qingdao University between September 2017 and September 2022. TAVR cases were stratified into three groups [heart failure with reduced ejection fraction (HFrEF), heart failure with mildly reduced ejection fraction (HFmrEF), heart failure with preserved ejection fraction (HFpEF)] by left ventricular ejection fraction (LVEF). Baseline characteristics, changes in echocardiographic parameters (1 week and 1 month), BNP (1 month), and NYHA class (6 months) post-TAVR were compared across the three groups. Meanwhile, we observed the adverse events of the patients after TAVR. A total of 96 patients were included, of whom 15 (15.6%) had HFrEF, 15 (15.6%) had HFmrEF, and 66 (68.8%) had HFpEF. Compared to the HFpEF subgroup, patients in the HFrEF subgroup were younger (p < 0.05), and with a higher BNP (p < 0.05). The left ventricular end-diastolic dimension (LVEDD) in HFrEF group decreased significantly after TAVR. HFmrEF and HFrEF patients showed significant improvements in LVEF after TAVR. The pulmonary artery systolic pressure (PASP), aortic valve peak gradient (AVPG) and aortic valve peak gradient (V ) decreased significantly 1 month after TAVR in all three groups compared to the baseline (all p < 0.05). BNP significantly reduced in HFrEF group compared to HFpEF patients after TAVR (p < 0.05). The majority of patients experienced an improvement at least one NYHA class in all three groups 6 months post-TAVR. There is no significant increase in the risk of adverse events in the HFrEF group. Patients who underwent TAVR achieved significant improvements in BNP, NYHA class, LVEDD, LVEF, and PASP across the three HF classes, with a more rapid and pronounced improvement in the HFrEF and HFmrEF groups. Complication rates were low in the different HF groups. There is no significant increase in the risk of periprocedural complications in the HFrEF and HFmrEF groups. [Abstract copyright: © 2023. The Author(s).

    1-(3,3-Dichloro­all­yloxy)-2-nitro­benzene

    Get PDF
    In the title compound, C9H7Cl2NO3, the dihedral angle between the benzene ring and the plane of the nitro group is 50.2 (1)°, and that between the benzene ring and the best plane through the dichloro­allyl fragment is 40.1 (1)°

    Plant microRNAs: Biogenesis, Homeostasis, and Degradation

    Get PDF
    MicroRNAs (miRNAs), a class of endogenous, tiny, non-coding RNAs, are master regulators of gene expression among most eukaryotes. Intracellular miRNA abundance is regulated under multiple levels of control including transcription, processing, RNA modification, RNA-induced silencing complex (RISC) assembly, miRNA-target interaction, and turnover. In this review, we summarize our current understanding of the molecular components and mechanisms that influence miRNA biogenesis, homeostasis, and degradation in plants. We also make comparisons with findings from other organisms where necessary

    Streptococcus mutans adhesion force sensing in multi-species oral biofilms

    Get PDF
    Bacteria utilize chemical and mechanical mechanisms to sense their environment, to survive hostile conditions. In mechanical sensing, intra-bilayer pressure profiles change due to deformation induced by the adhesion forces bacteria experience on a surface. Emergent properties in mono-species Streptococcus mutans biofilms, such as extracellular matrix production, depend on the adhesion forces that streptococci sense. Here we determined whether and how salivary-conditioning film (SCF) adsorption and the multi-species nature of oral biofilm influence adhesion force sensing and associated gene expression by S. mutans. Hereto, Streptococcus oralis, Actinomyces naeslundii, and S. mutans were grown together on different surfaces in the absence and presence of an adsorbed SCF. Atomic force microscopy and RT-qPCR were used to measure S. mutans adhesion forces and gene expressions. Upon SCF adsorption, stationary adhesion forces decreased on a hydrophobic and increased on a hydrophilic surface to around 8 nN. Optical coherence tomography showed that triple-species biofilms on SCF-coated surfaces with dead S. oralis adhered weakly and often detached as a contiguous sheet. Concurrently, S. mutans displayed no differential adhesion force sensing on SCF-coated surfaces in the triple-species biofilms with dead S. oralis, but once live S. oralis were present S. mutans adhesion force sensing and gene expression ranked similar as on surfaces in the absence of an adsorbed SCF. Concluding, live S. oralis may enzymatically degrade SCF components to facilitate direct contact of biofilm inhabitants with surfaces and allow S. mutans adhesion force sensing of underlying surfaces to define its appropriate adaptive response. This represents a new function of initial colonizers in multi-species oral biofilms

    Modulation of the thermodynamic, kinetic and magnetic properties of the hydrogen monomer on graphene by charge doping

    Full text link
    The thermodynamic, kinetic and magnetic properties of the hydrogen monomer on doped graphene layers were studied by ab initio simulations. Electron doping was found to heighten the diffusion potential barrier, while hole doping lowers it. However, both kinds of dopings heighten the desorption potential barrier. The underlying mechanism was revealed by investigating the effect of doping on the bond strength of graphene and on the electron transfer and the coulomb interaction between the hydrogen monomer and graphene. The kinetic properties of H and D monomers on doped graphene layers during both the annealing process (annealing time t0=t_0 =300 s) and the constant-rate heating process (heating rate α=\alpha =1.0 K/s) were simulated. Both electron and hole dopings were found to generally increase the desorption temperatures of hydrogen monomers. Electron doping was found to prevent the diffusion of hydrogen monomers, while the hole doping enhances their diffusion. Macroscopic diffusion of hydrogen monomers on graphene can be achieved when the doping-hole density reaches 5.0×10135.0\times10^{13} cm2^{-2}. The magnetic moment and exchange splitting were found to be reduced by both electron and hole dopings, which was explained by a simple exchange model. The study in this report can further enhance the understanding of the interaction between hydrogen and graphene and is expected to be helpful in the design of hydrogenated-graphene-based devices.Comment: Submitte

    Targeting EZH2 Regulates Tumor Growth and Apoptosis Through Modulating Mitochondria Dependent Cell-Death Pathway in HNSCC

    Get PDF
    EZH2 is a negative prognostic factor and is overexpressed or activated in most human cancers including head and neck squamous cell carcinoma (HNSCC). Analysis of The Cancer Genome Atlas (TCGA) HNSCC data indicated that EZH2 over-expression was associated with high tumor grade and conferred poor prognosis. EZH2 inhibition triggered cell apoptosis, cell cycle arrest and decreased cell growth in vitro. MICU1 (mitochondrial calcium uptake1) was shown to be down regulated when EZH2 expression was inhibited in HNSCC. When the EZH2 and MICU1 were inhibited, HNSCC cells became susceptible to cell cycle arrest and apoptosis. Mitochondrial membrane potential and cytosolic Ca2+ concentration analysis suggested that EZH2 and MICU1 were required to maintain mitochondrial membrane potential stability. A xenograft tumor model was used to confirm that EZH2 depletion inhibited HNSCC cell growth and induced tumor cell apoptosis. In summary, EZH2 is a potential anti-tumor target in HNSCC

    Long Non Coding RNA MALAT1 Promotes Tumor Growth and Metastasis by Inducing Epithelial-Mesenchymal Transition in Oral Squamous Cell Carcinoma

    Get PDF
    The prognosis of advanced oral squamous cell carcinoma (OSCC) patients remains dismal, and a better understanding of the underlying mechanisms is critical for identifying effective targets with therapeutic potential to improve the survival of patients with OSCC. This study aims to clarify the clinical and biological significance of metastasis-associated long non-coding RNA, metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) in OSCC. We found that MALAT1 is overexpressed in OSCC tissues compared to normal oral mucosa by real-time PCR. MALAT1 served as a new prognostic factor in OSCC patients. When knockdown by small interfering RNA (siRNA) in OSCC cell lines TSCCA and Tca8113, MALAT1 was shown to be required for maintaining epithelial-mesenchymal transition (EMT) mediated cell migration and invasion. Western blot and immunofluorescence staining showed that MALAT1 knockdown significantly suppressed N-cadherin and Vimentin expression but induced E-cadherin expression in vitro. Meanwhile, both nucleus and cytoplasm levels of β-catenin and NF-κB were attenuated, while elevated MALAT1 level triggered the expression of β-catenin and NF-κB. More importantly, targeting MALAT1 inhibited TSCCA cell-induced xenograft tumor growth in vivo. Therefore, these findings provide mechanistic insight into the role of MALAT1 in regulating OSCC metastasis, suggesting that MALAT1 is an important prognostic factor and therapeutic target for OSCC
    corecore