11,092 research outputs found

    Probing Half-odd Topological Number with Cold Atoms in a Non-Abelian Optical Lattice

    Full text link
    We propose an experimental scheme to probe the contribution of a single Dirac cone to the Hall conductivity as half-odd topological number sequence. In our scheme, the quantum anomalous Hall effect as in graphene is simulated with cold atoms trapped in an optical lattice and subjected to a laser-induced non-Abelian gauge field. By tuning the laser intensity to change the gauge flux, the energies of the four Dirac points in the first Brillouin zone are shifted with each other and the contribution of the single Dirac cone to the total atomic Hall conductivity is manifested. We also show such manifestation can be experimentally probed with atomic density profile measurements.Comment: 5 pages, 3 figure

    Optimal Power Flow in Stand-alone DC Microgrids

    Get PDF
    Direct-current microgrids (DC-MGs) can operate in either grid-connected or stand-alone mode. In particular, stand-alone DC-MG has many distinct applications. However, the optimal power flow problem of a stand-alone DC-MG is inherently non-convex. In this paper, the optimal power flow (OPF) problem of DC-MG is investigated considering convex relaxation based on second-order cone programming (SOCP). Mild assumptions are proposed to guarantee the exactness of relaxation, which only require uniform nodal voltage upper bounds and positive network loss. Furthermore, it is revealed that the exactness of SOCP relaxation of DC-MGs does not rely on either topology or operating mode of DC-MGs, and an optimal solution must be unique if it exists. If line constraints are considered, the exactness of SOCP relaxation may not hold. In this regard, two heuristic methods are proposed to give approximate solutions. Simulations are conducted to confirm the theoretic results

    A WENO Algorithm of the Temperature and Ionization Profiles around a Point Source

    Full text link
    We develop a numerical solver for radiative transfer problems based on the weighted essentially nonoscillatory (WENO) scheme modified with anti-diffusive flux corrections, in order to solve the temperature and ionization profiles around a point source of photons in the reionization epoch. Algorithms for such simulation must be able to handle the following two features: 1. the sharp profiles of ionization and temperature at the ionizing front (I-front) and the heating front (T-front), and 2. the fraction of neutral hydrogen within the ionized sphere is extremely small due to the stiffness of the rate equations of atom processes. The WENO scheme can properly handle these two features, as it has been shown to have high order of accuracy and good convergence in capturing discontinuities and complicated structures in fluid as well as to be significantly superior over piecewise smooth solutions containing discontinuities. With this algorithm, we show the time-dependence of the preheated shell around a UV photon source. In the first stage the I-front and T-front are coincident, and propagate with almost the speed of light. In later stage, when the frequency spectrum of UV photons is hardened, the speeds of propagation of the ionizing and heating fronts are both significantly less than the speed of light, and the heating front is always beyond the ionizing front. In the spherical shell between the I- and T-fronts, the IGM is heated, while atoms keep almost neutral. The time scale of the preheated shell evolution is dependent on the intensity of the photon source. We also find that the details of the pre-heated shell and the distribution of neutral hydrogen remained in the ionized sphere are actually sensitive to the parameters used. The WENO algorithm can provide stable and robust solutions to study these details.Comment: 24 pages, 7 figures, accepted in New Astronom

    Evaluation Method and Empirical Study of Regional Collaborative Sustainable Development under Environmental Regulation

    Get PDF
    16-20According to the “pollution haven hypothesis”, polluting industries may shift from developed areas to underdeveloped areas, which may lead to an unbalanced environmental regulation effect in a region consisting of several provinces. This means that the environmental regulation in various provinces will have on impact on regional collaborative sustainable development (RCSD). Therefore, this paper adds environmental regulation to the RCSD evaluation system, adopts a combination of TOPSIS (Technique for Order Preference by Similarity to an Ideal Solution) and grey relational analysis, establishes a distance collaborative model, and uses the empirical data of the Beijing–Tianjin–Hebei region (BTH region) from 2007 to 2016, evaluate the RCSD under environmental regulation. The evaluation results show that the development levels in Beijing, Tianjin, and Hebei are quite different and that there is a feature of unbalanced development; From 2007 to 2016, the level of comprehensive synergy development in the BTH region is at a steady rising stage, but the upward trend is not obvious and there is little change
    corecore