2,081 research outputs found
Dynamic Interactions between TIP60 and p300 Regulate FOXP3 Function through a Structural Switch Defined by a Single Lysine on TIP60
SummaryThe human FOXP3 molecule is an oligomeric transcriptional factor able to mediate activities that characterize T regulatory cells, a class of lymphocytes central to the regulation of immune responses. The activity of FOXP3 is regulated at the posttranslational level, in part by two histone acetyltransferases (HATs): TIP60 and p300. TIP60 and p300 work cooperatively to regulate FOXP3 activity. Initially, p300 and TIP60 interactions lead to the activation of TIP60 and facilitate acetylation of K327 of TIP60, which functions as a molecular switch to allow TIP60 to change binding partners. Subsequently, p300 is released from this complex, and TIP60 interacts with and acetylates FOXP3. Maximal induction of FOXP3 activities is observed when both p300 and TIP60 are able to undergo cooperative interactions. Conditional knockout of TIP60 in Treg cells significantly decreases the Treg population in the peripheral immune organs, leading to a scurfy-like fatal autoimmune disease
Holographic Dual of Linear Dilaton Black Hole in Einstein-Maxwell-Dilaton-Axion Gravity
Motivated by the recently proposed Kerr/CFT correspondence, we investigate
the holographic dual of the extremal and non-extremal rotating linear dilaton
black hole in Einstein-Maxwell-Dilaton-Axion Gravity. For the case of extremal
black hole, by imposing the appropriate boundary condition at spatial infinity
of the near horizon extremal geometry, the Virasoro algebra of conserved
charges associated with the asymptotic symmetry group is obtained. It is shown
that the microscopic entropy of the dual conformal field given by Cardy formula
exactly agrees with Bekenstein-Hawking entropy of extremal black hole. Then, by
rewriting the wave equation of massless scalar field with sufficient low energy
as the SL(2, R)SL(2, R) Casimir operator, we find the hidden
conformal symmetry of the non-extremal linear dilaton black hole, which implies
that the non-extremal rotating linear dilaton black hole is holographically
dual to a two dimensional conformal field theory with the non-zero left and
right temperatures. Furthermore, it is shown that the entropy of non-extremal
black hole can be reproduced by using Cardy formula.Comment: 15 pages, no figure, published versio
PRMT5 Associates With the FOXP3 Homomer and When Disabled Enhances Targeted p185erbB2/neu Tumor Immunotherapy
Regulatory T cells (Tregs) are a subpopulation of T cells that are specialized in suppressing immune responses. Here we show that the arginine methyl transferase protein PRMT5 can complex with FOXP3 transcription factors in Tregs. Mice with conditional knock out (cKO) of PRMT5 expression in Tregs develop severe scurfy-like autoimmunity. In these PRMT5 cKO mice, the spleen has reduced numbers of Tregs, but normal numbers of Tregs are found in the peripheral lymph nodes. These peripheral Tregs that lack PRMT5, however, display a limited suppressive function. Mass spectrometric analysis showed that FOXP3 can be di-methylated at positions R27, R51, and R146. A point mutation of Arginine (R) 51 to Lysine (K) led to defective suppressive functions in human CD4 T cells. Pharmacological inhibition of PRMT5 by DS-437 also reduced human Treg functions and inhibited the methylation of FOXP3. In addition, DS-437 significantly enhanced the anti-tumor effects of anti-erbB2/neu monoclonal antibody targeted therapy in Balb/c mice bearing CT26Her2 tumors by inhibiting Treg function and induction of tumor immunity. Controlling PRMT5 activity is a promising strategy for cancer therapy in situations where host immunity against tumors is attenuated in a FOXP3 dependent manner
Mild Hypothermia Attenuates Mitochondrial Oxidative Stress by Protecting Respiratory Enzymes and Upregulating MnSOD in a Pig Model of Cardiac Arrest
Mild hypothermia is the only effective treatment confirmed clinically to improve neurological outcomes for comatose patients with cardiac arrest. However, the underlying mechanism is not fully elucidated. In this study, our aim was to determine the effect of mild hypothermia on mitochondrial oxidative stress in the cerebral cortex. We intravascularly induced mild hypothermia (33°C), maintained this temperature for 12 h, and actively rewarmed in the inbred Chinese Wuzhishan minipigs successfully resuscitated after 8 min of untreated ventricular fibrillation. Cerebral samples were collected at 24 and 72 h following return of spontaneous circulation (ROSC). We found that mitochondrial malondialdehyde and protein carbonyl levels were significantly increased in the cerebral cortex in normothermic pigs even at 24 h after ROSC, whereas mild hypothermia attenuated this increase. Moreover, mild hypothermia attenuated the decrease in Complex I and Complex III (i.e., major sites of reactive oxygen species production) activities of the mitochondrial respiratory chain and increased antioxidant enzyme manganese superoxide dismutase (MnSOD) activity. This increase in MnSOD activity was consistent with the upregulation of nuclear factor erythroid 2-related factor 2 (Nrf2) mRNA and protein expressions, and with the increase of Nrf2 nuclear translocation in normothermic pigs at 24 and 72 h following ROSC, whereas mild hypothermia enhanced these tendencies. Thus, our findings indicate that mild hypothermia attenuates mitochondrial oxidative stress in the cerebral cortex, which may be associated with reduced impairment of mitochondrial respiratory chain enzymes, and enhancement of MnSOD activity and expression via Nrf2 activation
Neutrophils in cancer: neutral no more
Neutrophils are indispensable antagonists of microbial infection and facilitators of wound healing. In the cancer setting, a newfound appreciation for neutrophils has come into view. The traditionally held belief that neutrophils are inert bystanders is being challenged by the recent literature. Emerging evidence indicates that tumours manipulate neutrophils, sometimes early in their differentiation process, to create diverse phenotypic and functional polarization states able to alter tumour behaviour. In this Review, we discuss the involvement of neutrophils in cancer initiation and progression, and their potential as clinical biomarkers and therapeutic targets
- âŠ