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SUMMARY

The human FOXP3 molecule is an oligomeric tran-
scriptional factor able to mediate activities that char-
acterize T regulatory cells, a class of lymphocytes
central to the regulation of immune responses. The
activity of FOXP3 is regulated at the posttranslational
level, in part by two histone acetyltransferases
(HATs): TIP60 and p300. TIP60 and p300 work coop-
eratively to regulate FOXP3 activity. Initially, p300
and TIP60 interactions lead to the activation of
TIP60 and facilitate acetylation of K327 of TIP60,
which functions as a molecular switch to allow
TIP60 to change binding partners. Subsequently,
p300 is released from this complex, and TIP60 inter-
acts with and acetylates FOXP3. Maximal induction
of FOXP3 activities is observed when both p300
and TIP60 are able to undergo cooperative inter-
actions. Conditional knockout of TIP60 in Treg cells
significantly decreases the Treg population in the
peripheral immune organs, leading to a scurfy-like
fatal autoimmune disease.

INTRODUCTION

FOXP3 plays an important role in the regulation of Treg function

(Fontenot et al., 2003; Hori et al., 2003; Li and Greene, 2007).

Acetylation, a process catalyzed by opposing actions of histone

acetyltransferases (HATs) and histone deacetylases (HDACs), is

one set of posttranslational modifications that regulates the

stability and transcriptional activity of FOXP3. HATs and HDACs

were first identified as enzymes responsible for histone acetyla-

tion but were later found to promote acetylation of many sub-

strates other than histone (Li et al., 2007; Tao et al., 2007; van

Loosdregt et al., 2010; Xiao et al., 2010; Zhang et al., 2012).

Based on sequence homology, HATs can be divided into three

major categories: the Gcn5/PCAF family, p300/CBP family, and

MYST family (Yang, 2004). Two HATs, TIP60, a member of the
C

MYST family, and p300, of the p300/CBP family, have been

reported to promote FOXP3 acetylation (Li et al., 2007; Liu

et al., 2013; van Loosdregt et al., 2010). TIP60 interacts with

the N-terminal domain of FOXP3 and is required for the

increased repressive transcriptional activity of FOXP3. Acetyla-

tion of lysine (K) 8 of FOXP3 promoted by TIP60 is important to

the increased activity of FOXP3 because a HAT-deficient

TIP60 mutant is not able to enhance pFOXP3-suppressive acti-

vity (Li et al., 2007). p300 has been suggested to have a similar

effect in promoting the repressive transcriptional activity of

FOXP3 by increasing the stability of certain pools of FOXP3

(van Loosdregt et al., 2010). As in the case of many other pro-

teins, the stability of FOXP3 is regulated by ubiquitination, which

leads to proteosome-mediated protein degradation. The p300

moiety increases the acetylation level of FOXP3, which then

decreases the ubiquitination level of FOXP3, preventing its

degradation (van Loosdregt et al., 2011).

In a comparable manner to regulation of the activity of many

kinases by phosphorylation, the acetyltransferase activities of

certain HATs are also regulated through acetylation catalyzed

either by itself or by other HATs. Autoacetylation of TIP60 can

be induced by diverse signals such as UV irradiation of cells.

This type of injury and its signals increase TIP60 HAT activity.

Deacetylation of TIP60 by Sirtuin 1 (SIRT1) decreases its HAT

activity and maintains levels of TIP60 proteins (Wang and

Chen, 2010; Yamagata and Kitabayashi, 2009). Similarly, auto-

acetylation is also important for the function of p300. Autoacety-

lation of an inhibitory loop in p300 is thought to be required to

activate the HAT activity of p300 and increase substrate acces-

sibility (Thompson et al., 2004). p300 may further promote the

acetylation of TIP60 (Col et al., 2005). Therefore, a complicated

set of interactions occurs between different HATs and is required

for regulation of acetyltransferase activities.

TIP60 and p300 have been identified previously as HATs that

individually influence the activity of FOXP3 (Li et al., 2007; Liu

et al., 2013; van Loosdregt et al., 2010). Because acetylation is

critical to the function of FOXP3, understanding the separate

and combined roles of these HATs in the regulation of FOXP3

is important to understand the molecular mechanisms involved

in regulation of Treg cells.
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Figure 1. Cooperative Effect of TIP60 and p300 on FOXP3 Acetyla-

tion

293T cells are transfected with HA-FOXP3, FLAG-TIP60, FLAG-p300, or HAT-

deficient FLAG-TIP60 mutant (mut) or FLAG-p300 mutant as indicated.

Twenty-four hours after transfection, cell lysates were collected and immu-

noprecipitated (IP) with anti-HA agarose, followed by blotting with anti-acet-

ylated lysine antibody or anti-HA antibody. WB, western blot.

Figure 2. p300 and TIP60 Promote the Acetylation of Each Other

(A) TIP60 promotes the acetylation of p300. 293T cells were transfected with

HA-TIP60 and WT or HAT-deficient FLAG-p300 as indicated. Twenty-four

hours after transfection, cell lysates were immunoprecipitated with anti-FLAG

agarose and blotted with anti-acetylated lysine or anti-FLAG HRP.

(B–D) 293T cells were transfected with HA-p300 and WT or mutated FLAG-

TIP60 as indicated. Twenty-four hours after transfection, cell lysates were

immunoprecipitated with anti-FLAG agarose and blotted with anti-acetylated

lysine antibody or anti-FLAG HRP.

(B) p300 promotes the acetylation level of WT TIP60, but not HAT-deficient

TIP60 mutant.

(C) HAT-deficient p300 mutant has the same effect in promoting TIP60 acet-

ylation.

(D) TIP60 K327R mutation decreases TIP60 acetylation.
Our studies indicate that p300 interactions with Tip60

promote TIP60 autoacetylation, which we have defined as

important to maintain the stability of the TIP60 protein. p300

interaction with Tip60 also critically promotes a specific modifi-

cation that acts as a switch to govern TIP60’s interaction with

its substrates. TIP60 in turn promotes p300 acetylation that is

critical for HAT activity of p300. Thus, these two enzymes pro-

mote the acetylation level andHAT activities of each other, which

promote a synergistic effect on FOXP3 acetylation and increase

the repressive transcriptional activity of FOXP3. We have also

unexpectedly discovered a dominant role for TIP60 in mainte-

nance of peripheral Treg survival and function. Selective loss

of TIP60 in FOXP3-expressing Treg cells can lead to significant

peripheral deficits of suppressive activity that lead to cata-

strophic scurfy-like disease.

RESULTS

TIP60 and p300 Promote FOXP3 Acetylation
Cooperatively in a HAT-Dependent Manner
Both TIP60 and p300 have been shown to promote the acetyla-

tion of FOXP3. We sought to understand if these enzymes act in

a cooperative manner. To investigate this cooperative interplay,

293T cells were cotransfected with FOXP3, TIP60, and p300.

The acetylation of FOXP3 was then determined in the presence

of TIP60 and p300. Figure 1 shows that a strong acetylation

pattern of FOXP3 is observed when both TIP60 and p300 are

present. In the absence of either enzyme, however, acetylation

of FOXP3 is weak. These studies indicate that synergistic inter-

actions occur between TIP60 and p300 in dominant acetylation

of FOXP3.

We next evaluated the contributory role of intrinsic TIP60 HAT

activity for the coactivation of p300 and other transcription

factors (Korzus et al., 1998; Senf et al., 2011). The acetylation

of FOXP3 was tested using HAT-deficient TIP60 (Q377E/

G380E) and p300 (F1504A) (Ikura et al., 2000; Ito et al., 2001)

species. Although the acetylation of FOXP3 was strong in the

presence of both wild-type (WT) TIP60 and WT p300, no acety-

lation was observed when either of the HAT-deficient mutants

was present (Figure 1). These studies indicate that the coopera-

tive effects that occur between TIP60 and p300 are HAT depen-

dent with respect to acetylation of FOXP3.
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p300 Acetylation Promoted by TIP60 Requires HAT
Activity of TIP60
Because TIP60 and p300 work synergistically to promote the

acetylation of FOXP3, we investigated how each enzyme is

affected by the activity of the other. To study this, the acetyla-

tion level of p300 was tested in both the presence and absence

of TIP60. As shown in Figure 2A, the presence of TIP60 led

to increased acetylation of p300. Surprisingly, this modification

effect was even more significant for the HAT-deficient mutant

of p300. Because the p300F1504A mutant lacks the HAT

activity required for autoacetylation, the increased level of

acetylation of p300 must be induced by the HAT activity of

TIP60. In addition, the acetylation of p300 may affect how it

binds to other proteins (Thompson et al., 2004). Therefore,



Figure 3. TIP60 Acetylation Increases TIP60 Stability through

Inhibiting TIP60 Ubiquitination

(A) Expression level of TIP60 is significantly increased in the presence of p300.

293T cells were transfected with FLAG-TIP60 alone, or cotransfected with

FLAG-TIP60 and HA-p300. Twenty-four hours after transfection, cell lysates

were collected and blotted with anti-FLAG HRP or anti-b-actin HRP.

(B) Expression level of TIP60 HAT-deficient mutant can be increased by

MG132 treatment. 293T cells were transfected with WT or HAT-deficient

FLAG-TIP60 mutant. Twenty-four hours after transfection, cells were treated

with 2 mM MG132 for 16 hr. Cell lysates were then collected and blotted with

anti-FLAG HRP or anti-b-actin HRP.

(C and D) TIP60 ubiquitination is correlated with TIP60 acetylation. 293T cells

were cotransfected with HA-p300 and WT or HAT-deficient FLAG-TIP60

mutant (C), or transfected with WT FLAG-TIP60 or FLAG-TIP60 K327 mutants

(D). Twenty-four hours after transfection, cells were treated with 2 mM MG132

to prevent proteasome-dependent degradation of ubiquitinated TIP60. Cell

lysates were immunoprecipitated with anti-FLAG HRP and blotted with anti-

ubiquitin HRP or anti-FLAG HRP.
we examined the interaction between TIP60 and p300 and

unexpectedly discovered reduced interactions between the

HAT-deficient p300 mutant and TIP60 (Figure S1), indicating

that acetylation activity of p300 correlates with its ability to

interact with TIP60.
C

TIP60 Autoacetylation at K327 Is Promoted by Its
Interaction with p300
It was unclear whether the HAT activity of both enzymes is

required for p300 to promote TIP60 acetylation. Therefore,

HAT-deficient mutants of TIP60 and p300 were employed to

resolve this issue. Although WT p300 significantly increased

the acetylation of WT TIP60, it had no effect on the TIP60 mutant

(Figure 2B), indicating that TIP60 relies on its own intrinsic auto-

acetylation even in the presence of p300. The p300 mutant, on

the other hand, showed comparable activity to that of WT

p300 to enhance TIP60 acetylation (Figure 2C). Thus, unlike

TIP60, the HAT activity of p300 does not play a determinant

role in promoting TIP60 acetylation.

K327 of TIP60 has been identified as a strictly conserved lysine

site among theMYST family proteins, andmoreover, this residue

can be autoacetylated (Peng et al., 2012; Wang and Chen, 2010;

Yang et al., 2012). We explored the possibility that autoacetyla-

tion at K327 is promoted by p300 collisions as well. In the

absence of p300, autoacetylation of TIP60 is totally abolished

by the K327R mutation, indicating that K327 is the major auto-

acetylation site in TIP60 (Figure S2). Similarly, in the presence

of p300, the acetylation of TIP60 was significantly reduced

when K327 was substituted with arginine (Figure 2D), indicating

that p300 physical interactions with Tip60 actually promote the

autoacetylation of TIP60 at K327. Acetylation of TIP60 (in partic-

ular autoacetylation) is known to be important for supporting the

total HAT activity of TIP60 (Yang, 2004). Therefore, K327 acety-

lation promoted by p300 also regulates the activity of TIP60.

However, unexpectedly mutating K327 in TIP60 only slightly

decreased the cooperative effect of TIP60 and p300 in pro-

moting Foxp3 acetylation. Our studies thus distinguish the

consequences of two discreet mutations. Unlike the Q377E/

G380E mutation of TIP60 that limits HAT activity and FOXP3

modification, the TIP60 K327 residue is not critical for the coop-

erative effects of TIP60 and p300 that lead to cooperative FOXP3

acetylation (Figure S3).

Autoacetylation of TIP60 Promoted by p300 Increases
TIP60 Stability through Inhibiting TIP60 Ubiquitination
Posttranslational acetylation is important for protein stability

because it prevents protein degradation mediated by ubiquitina-

tion (Caron et al., 2005). To investigate whether p300 regulates

TIP60 in a similar manner, the expression level of TIP60 was

examined. Expression of TIP60 was found to be increased in

the presence of p300 (Figure 3A). To define the correlation

between acetylation and protein stability, the HAT-deficient

mutant of TIP60 was studied. As shown in Figure 3B, expression

of the TIP60 mutant was significantly reduced compared to that

of WT TIP60, indicating the crucial role acetylation plays in the

stability of the TIP60 protein. Only in the presence of MG132, a

chemical used to inhibit proteasome-dependent protein degra-

dation, was the expression level of the TIP60 mutant restored

(Figure 3B).

We further investigated the ubiquitination patterns of TIP60.

Ubiquitination of WT TIP60 was much lower than that of the

HAT-deficient mutant (Figure 3C). In addition, the presence of

p300 further decreased ubiquitination of WT TIP60 due to

increased acetylation promoted by p300. Because p300
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Figure 4. Interaction of TIP60 with Its Substrates Is Regulated by the

Acetylation Status of TIP60

(A) Reverse correlation between TIP60 acetylation and interaction of Tip60 and

p300. 293T cells were transfected with HA-p300, WT, or HAT-deficient FLAG-

TIP60. Twenty-four hours after transfection, cells were treated with 400 nM

Trichostatin A (TSA) and 10 mM nicotinamide (NAD) for 16 hr. Cell lysate was

then immunoprecipitated with anti-FLAG agarose and blotted with anti-HA

HRP or anti-FLAG HRP.

(B) Acetylation status at TIP60 K327 regulates the interaction of TIP60 and

p300. 293T cells were transfected with HA-p300 and WT FLAG-TIP60 or

FLAG-TIP60 K327 mutants. Twenty-four hours after transfection, cell lysate

was immunoprecipitated with anti-FLAG agarose and blotted with anti-HA

HRP or anti-FLAG HRP.

(C) TIP60 acetylation at K327 increases the interaction of TIP60 and FOXP3.

293T cells were cotransfected with HA-FOXP3 and WT FLAG-TIP60 or FLAG-

TIP60 K327Q mutant. Twenty-four hours after transfection, cell lysate was

immunoprecipitated with anti-HA agarose and blotted with anti-FLAG HRP or

anti-HA HRP.
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promotes the autoacetylation of TIP60 at K327, we also studied

the role of K327 in regulating the ubiquitination of TIP60. When

we substituted lysine with arginine, the K327R TIP60 mutant

showed reduced autoacetylation (data not shown) but increased

ubiquitination as compared with WT TIP60 (Figure 3D).

It is notable that a decrease in ubiquitination occurred when

K327 was mutated to glutamine, a modification that mimics

acetylation at this site. These results indicate that K327 is not a

ubiquitination site itself but rather that the acetylation of this

site promotes a conformational change of TIP60 to prevent

ubiquitination of the protein. Together, our data indicate that

the autoacetylation of TIP60 on K327, which can be enhanced

by p300, limits the protein from ubiquitination-mediated protea-

somal degradation by a mechanism that apparently relates to

large-scale changes in protein conformation.

Acetylation Regulates the Interaction of TIP60 with
p300 and FOXP3
We extended these studies to examine if autoacetylation of K327

of the TIP60 acetyltransferase promoted substrate switching.

Acetylation may regulate protein function by altering protein-

protein interactions, and acetylation of human ortholog of MOF

(hMOF) at K274 changes the spatial orientation of that particular

lysine, altering the interactions of hMOF with certain substrates

(Yuan et al., 2012). Further autoacetylation of TIP60 may disso-

ciate the TIP60 oligomer, resulting in the activation of TIP60.

Autoacetylation-driven dissociation may further lead to an im-

proved accessibility for its substrates (Wang and Chen, 2010).

Weexamined the interactionsof TIP60with either p300or FOXP3.

Surprisingly, our results showed that WT TIP60 interacted

much more weakly with p300 than the HAT-deficient mutant

of TIP60 (Figure 4A). This interaction was further decreased

by HDAC inhibitor (HDACi) treatment that prevents the de-

acetylation of TIP60. Together, these studies identify that auto-

acetylation lessens the interactions of TIP60 with other proteins

such as p300.

To determine if acetylation of the K327 residue of TIP60 itself

influences the interactions of TIP60 with other proteins, we first

investigated the interactions between p300 and the K327

mutants of TIP60 (Figure 4B). The K327Rmutant of TIP60, which

is less acetylated than the WT species, interacted strongly with

p300, whereas the K327Q mutant, a residue mutation that

mimics the acetylated status of WT K327, was found to interact

only weakly with p300.

Thereafter, we investigated whether the interactions between

FOXP3 and TIP60 are altered by the acetylation of TIP60.

Because the autoacetylation of TIP60 is weak in the absence

of p300, the K327Q mutant was used to mimic the acetylated

TIP60. In contrast to the interaction of TIP60 and p300, a much

stronger interaction with FOXP3 was observed for the TIP60

K327Q mutant as compared with the WT TIP60 (Figure 4C).

In vitro pull-down assays using purified TIP60 and Foxp3 frag-

ments also verified that TIP70 K327R mutants have stronger

interaction with Foxp3 (Figure S4A). The same results were

also observed when other substrates of TIP60 are used, such

as p53 or HDAC7 (Figures S4B and S4C). Collectively, our data

indicate that the acetylation of the single K327 residue plays a

pivotal role in the regulation of the interactions of TIP60 with



Figure 5. p300 and TIP60 Increase the Repressive Transcriptional

Activity of FOXP3 Synergistically

(A) Schematic model of FOXP3 binding to luciferase reporter construct used in

luciferase assay.

(B) Synergistic effect of TIP60 and p300 on the repressive transcriptional

activity of FOXP3. 293T cells were transfected with pBIND (empty vector),

pBIND-FOXP3, FLAG-TIP60, FLAG-p300, pG5-Luc luciferase reporter, and

the control MSV-b-gal plasmid as indicated. The luciferase activity of the

reporter genewas normalized with b-gal activity. The error bars indicate the SD

value.
other proteins and provide a biochemical explanation for

increased interactions with FOXP3 after substrate-switching

conformations are induced.

Transcriptional Activity of FOXP3 Is Promoted by TIP60
and p300 Cooperative Interactions
As mentioned, TIP60 and p300 can cooperatively increase the

acetylation of FOXP3. We examined if cooperative interactions

between TIP60 and p300 that affect FOXP3 acetylation correlate

with the change in the transcriptional activity of FOXP3. A facile

transcriptional repression assay has been established to deter-

mine the effect of FOXP3, using a Gal4-FOXP3 fusion protein,

on the expression of the firefly luciferase reporter gene driven

by a promoter region containing five Gal4-binding sites (Li

et al., 2007). This system was used to evaluate the cooperative

effect of TIP60 and p300 on the transcriptional activity of

FOXP3 (Figure 5A). The MSV-b-gal vector with a constitutive

expression of b-galactosidase (b-gal) was used as a control for

transfection. As shown in Figure 5B, FOXP3 alone repressed

transcription of the luciferase reporter gene. Such repression

was slightly enhanced in the presence of either TIP60 or p300.

When both enzymes were present, however, there was a signif-

icant increase in the repressive transcriptional activity of FOXP3,

indicating that TIP60 and p300 function cooperatively to in-

crease the transcriptional activity of FOXP3.
C

Effect of p300 and TIP60 in the Development of Treg
Cells
To define the importance of TIP60 and p300 in regulating Treg

function in vivo, we conditionally deleted p300 or TIP60 in Treg

cells by crossing p300fl/fl or TIP60fl/fl mice with Foxp3YFP-Cre

mice. The resultant p300fl/fl Foxp3YFP-Cre mice were further

crossed with TIP60fl/fl mice to generate p300fl/fl TIP60fl/fl

Foxp3YFP-Cre mice, which represent double conditional knock-

outs of p300 and TIP60 in Treg cells.

p300fl/fl Foxp3YFP-Cre mice developed normally until 8 weeks of

age with a normal population of Treg cells in thymus, lymph

node, and spleen (Figures 6A and 6B). The size of p300fl/fl

Foxp3YFP-Cre mice is also similar to the littermate control without

Foxp3-Cre gene (data not shown). Although p300 is important for

the stability of the Foxp3 protein, suppressive assays using Treg

cells from p300fl/fl Foxp3YFP-Cre mice reveal that p300 has a

modest effect on the suppressive function of Treg cells (Fig-

ure 6C). In accordance with this, p300fl/fl Foxp3YFP-Cre

mice have larger spleen and lymph nodes compared with

Foxp3YFP-Cre mice, but the size of lymph nodes from p300fl/fl

Foxp3YFP-Cre is smaller than that from Tip60fl/fl Foxp3YFP-Cre or

p300fl/fl TIP60fl/fl Foxp3YFP-Cre mice (Figure S5A). Hematoxylin

and eosin (H&E) staining of liver and lung sections also shows

modest inflammation in these sections (Figure S5B). p300

therefore plays a role in regulating the development and function

of Treg cells, but it is not absolutely required to prevent the

development of fatal autoimmune diseases.

In contrast to p300fl/fl Foxp3YFP-Cre mice, Tip60fl/fl

Foxp3YFP-Cre and p300fl/fl TIP60fl/fl Foxp3YFP-Cre mice developed

severe weight loss, dermatitis, and splenomegaly from 2 weeks

old and died at an early age (Figures 6D and S5). Treg cells

from these mice were analyzed to investigate the role of TIP60

in regulating Treg function. Surprisingly, TIP60 knockout in

Foxp3-expressing cells greatly decreased the Treg populations

in both the spleen and lymph node (Figures 6A and 6B),

indicating an indispensable role of TIP60 in the peripheral

development and function of Treg cells. Unexpectedly, the

Treg population in the thymus is increased by TIP60 knockout,

or in the TIP60 and p300 double knockout, indicating that

TIP60 is differentially required for the development of Treg cells

in thymus or in periphery. TIP60 knockout in Treg cells might

cause a defect in the exit of Treg cells from thymus, and

TIP60-influenced functionalities are important in peripheral

aspects of Treg cell biology.

The suppressive function of Tregs from Tip60fl/fl Foxp3YFP-Cre

and p300fl/fl TIP60fl/fl Foxp3YFP-Cre mice could not be

characterized due to the paucity of Treg cells in spleen and

lymph node. CD4+ T cells acquire suppressive function

when they are transduced with Foxp3. Therefore, to investigate

the role of TIP60 in regulating the suppressive function of

Treg cells, CD4+ naive T cells were transduced with both

Foxp3 and WT TIP60 or TIP60 mutants, then the suppres-

sive function of these transduced cells was investigated.

As expected and as reported previously, TIP60 HAT-deficient

mutants (Q377E/G380E) show reduced suppressive function

compared to WT TIP60 (Figure 6D). However, we note that

the TIP60 K327Q mutant-transduced T cells yield inter-

mediate suppression. Structurally, whereas K327Q mimics the
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Figure 7. Schematic Model of the Cooperation between TIP60 and

p300 on the Regulation of FOXP3

(A) Cooperative actions of TIP60 and p300. TIP60 and p300 promote the

acetylation of each other, and their deacetylation is catalyzed by SIRT1 and

SIRT2, respectively. Deacetylated TIP60 is ubiquitinated and then degraded in

a proteasome-dependent manner, whereas acetylated TIP60 disassociates

with p300 and forms a stable complex with FOXP3. Together with p300, TIP60

promotes the acetylation of FOXP3, and the repressive transcriptional activity

of FOXP3 is maximized by the synergistic effect of TIP60 and p300.

(B) Structural model of acetylated TIP60 indicating that acetylation of K327

would favor FOXP3 binding to the cleft.
conformation of acetylated 327, it does not permit the entire set

of functions promoted by acetylation of that specific residue in

TIP60. Complete functionality may require further conforma-

tional changes after acetylation that induce more consistent

substrate switching and binding. Overall, these data indicate

that TIP60 is indispensable for the development and function

of a population of peripheral Treg cells.
Figure 6. TIP60 Plays a Major Role in the Maintenance of Peripheral T

(A) Representative dot plots of Treg populations in thymus, lymph node, mesente

Foxp3YFP-Cre, and p300fl/fl TIP60fl/fl Foxp3YFP-Cre mice.

(B) The average percentage of CD4+ T cells expressing Foxp3 in thymus, lymph no

values from three individual mice. The error bars indicate the SD value.

(C) Suppressive function of Treg cells from p300fl/fl Foxp3YFP-Cre mice.

(D) Size of TIP60 conditional knockout mouse. Left is littermate without Foxp3-c

(E) CD4+ T cells were transduced with Foxp3 and WT TIP60 or TIP60 mutant. Tr

indicated Treg and Teff ratio.

C

DISCUSSION

The acetylation of lysine residues represents an important post-

translational modification to modify the activity of transcriptional

factors. During our studies of FOXP3 complexes, we observed

that two important HATs, TIP60 and p300, interact cooperatively

to promote the acetylation of FOXP3. Based on these findings,

we also investigated the molecular mechanisms responsible

for this cooperative effort. Our results indicate that the acetyla-

tion of TIP60 and p300 triggers a specific residue-defined

‘‘switch’’ that is responsible for controlling the TIP60 protein

stability, HAT activity, and substrate interactions. Acetylation of

K327 is proposed to alter conformation to promote changes in

substrate interactions. We have developed a scheme that illus-

trates this complex process and also created a structural model

to identify the atomic features of Tip60 that appear relevant (see

Figures 7A and 7B).

Our results also indicate that the cooperative interactions

between TIP60 and p300 lead to a complex mode of regulation

for FOXP3. Acetylation of the p300 molecule increases the

enzyme’s HAT activity (Thompson et al., 2004). TIP60 regulates

FOXP3 indirectly by mediating the acetylation of p300. With

increased acetylation, p300 can then acetylate FOXP3 at K249

and K251, forcing an atomically definable structural change in

FOXP3’s dimers (Song et al., 2012). At the same time, p300

regulates TIP60 modifications as well. p300 interacts with the

zinc finger region of TIP60 to promote its acetylation (Col et al.,

2005). Our studies now identify molecular details of the process

by which p300 regulates TIP60. Using the HAT-deficient mutant

of TIP60 in the presence of p300, we demonstrated that intrinsic

autoacetylation processes are responsible for the increased

acetylation of TIP60 that results from this interaction.

There are three different paths by which the acetylation

process regulates TIP60. First, acetylation of K327 of TIP60 is

important for the HAT activity of TIP60. Therefore, K327 acetyla-

tion promoted by p300 interactions enhances the HAT activity of

TIP60. Second, acetylation increases the stability of TIP60 by

inhibiting ubiquitination, thus preventing proteasome-depen-

dent degradation. When compared to the HAT-deficient mutant

of TIP60, WT TIP60 showed less ubiquitination and, therefore,

increased expression. Upon interaction with p300, ubiquitination

of TIP60 was further decreased. Third, acetylation regulates

TIP60’s interactions with other proteins. Oligomerization of

TIP60 is disrupted by acetylation, which can be reversed by

SIRT1 (Wang and Chen, 2010). In this study, we showed that

the acetylation of TIP60 at one residue, K327, prompted a

protein conformation change that leads to disassociation from

p300 along with the reassociation with its substrates such as
reg Cells

ric lymph node, and spleen from Foxp3YFP-Cre, p300fl/fl Foxp3YFP-Cre, Tip60fl/fl
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FOXP3. Of note, our laboratory has recently identified small

allosteric molecules that target TIP60 functions. These synthetic

allosteric small molecules can promote Treg functionalities

(unpublished data) supporting the role of changing TIP60 confor-

mation to alter function.

We now propose a schematic model of how p300 and TIP60

cooperatively regulate FOXP3 functionalities (Figure 7A). To

begin with, both p300 and SIRT1 regulate the function of TIP60

by modulating its acetylation. With SIRT1, deacetylation of

TIP60 occurs, resulting in the formation of an oligomeric

complex. Upon its interaction with p300, acetylation of TIP60

then occurs. Once acetylated, TIP60 dissociates from the

oligomer as well as p300 to facilitate its final interaction with

FOXP3.

Although the role of TIP60 and p300 in regulating Foxp3

activity has herein been delineated in vitro, relatively little is

known about the roles of these discreet enzymes in regulating

the function of Treg cells. The complex role of p300 includes

maintaining Treg/Th17 cell levels by contributing to differentia-

tion events of Th17 cells (Dang et al., 2011). Although p300 has

been shown to be important to Foxp3 activity in vitro, a dominant

regulatory significance of p300 was not observed in this study.

We are aware that we have not excluded other HAT enzymes

with similar functions to p300, such as CBP. CBP is highly

homologous to p300 and shares many common substrates

including FOXP3 (M.I.G. and Y.X., unpublished data). Con-

sequently, we conclude that it is the redundancy of the p300

type of HAT that accounts for its role in vivo, and disabling

p300 by itself may not suffice to alter Treg activities.

By conditionally knocking out TIP60 in Treg cells, we show that

TIP60 plays a vital role in some fundamental requirement of Treg

cells in the periphery. The decrease of Treg population may

result from increased CD4+ T cell numbers due to impaired

Treg function and T cell activation. However, Treg is not the

population that develops independently of CD4+ cells. The

observation that the ratio of Foxp3+ cells is decreased indicates

that there is a problem in the generation of Treg population in

these mutant mice. We consider that migration or some survival

function of Treg cells in the periphery may be a reason that the

Tip60fl/fl Foxp3YFP-Cre mice develop fatal autoimmune diseases

similar to those seen in scurfy mice.

Our data indicate that TIP60 is an important enzymatic factor

that is differentially required for the survival of thymic and peri-

pheral Treg cells. Foxp3 forms dynamic complexes with other

proteins under different stimulatory conditions. It is noteworthy

that Treg-specific elimination of NFAT2, which is part of the

Foxp3 complex, has been found to limit peripheral follicular

regulatory T cell (TFR) populations possibly due to impaired

homing to B cell follicles (Li et al., 2007; Vaeth et al., 2014). We

suggest that TIP60 is also present in a vital complex that is

specially required for the survival of peripheral Treg cells and

whose disruption leads to fatal autoimmune diseases.

Recent studies also indicate nonenzymatic roles of deacety-

lases (HDAC3) in cellular functions (Sun et al., 2013), whereby

physical interactions of such vital complexes guide some

functions. In this regard, binding of HDAC6, independent of its

deacetylase activity, may contribute to regulation of TIP60 target

genes (Chen et al., 2013). Thus, TIP60 may also possess HAT-
1478 Cell Reports 7, 1471–1480, June 12, 2014 ª2014 The Authors
independent activities that can lead to different functional out-

comes. Investigations using mice with dominant-negative

TIP60 forms that lack HAT activity but retain substrate-interac-

tion surfaces needed to form dynamic complexes with other pro-

teins will be informative and are underway.

TIP60 and p300 aremembers of two important and structurally

distinct HAT families that regulate many aspects of cellular

function. We have discovered some of the features of how

these two distinct family elements cooperate. Our study de-

monstrates the critical role of TIP60 in maintaining peripheral

Treg cells and limiting autoimmune responses, therefore

providing a new target for regulating immune responses

therapeutically. We have also defined a correlation between

autoacetylation and ubiquitination of TIP60 that provides

further mechanistic insight into the regulation of TIP60’s activity

by other HATs. Because many other transcription factors such

as p53 are subject to the regulatory mechanisms of TIP60

and p300 (Ito et al., 2001; Tang et al., 2006), the acetylation of

these factors may also be regulated by the same cooperative

interplay of TIP60 and p300 discussed herein. This cooperative

and complex interplay may represent defining features of a

common regulatory mode of action of distinct HATs and their

shared substrates.

EXPERIMENTAL PROCEDURES

Mice

p300 conditional knockout mice were kindly provided by Dr. Paul Brindle

(St. Jude Children’s Hospital, Memphis). Cre-recombinase-mediated excision

was designed to remove exons 3–11, which comprise 71% of Tip60 exon

structure, including the chromo-finger, Zinc finger, and HAT domains, by

recombineering wherein LoxP sites were inserted into introns 2 and 11.

Correctly targeted embryonic stem cells were injected into C57/Bl6 blasto-

cysts, which, after implantation, transmitted the targeted allele via germline.

Following verification of targeting via Southern blotting and removal of the

neomycin-resistance gene, mice were bred to the genotypes used in these

experiments (J.W.L., A. Horst, and J.B. Fisher, unpublished data).

Foxp3YFP-Cre mice were obtained from Jackson Laboratory. All animals were

housed and bred in a specific pathogen-free animal facility of the University

of Pennsylvania. All the experiments were performed following national, state,

and institutional guidelines. Animal protocols were approved by the University

of Pennsylvania Animal Care and Use Committee.

Plasmids and Antibodies

The following antibodies were used in our studies: anti-Flag M2-Peroxidase

(Sigma-Aldrich); anti-HA-Peroxidase (3F10; Roche); anti-ubiquitin-Peroxidase

(sc-8017; Santa Cruz Biotechnology); and anti-acetyl-lysine (ICP0381;

ImmuneChem). Plasmids expressing the WT or HAT-deficient TIP60 were

constructed as previously described by Li et al. (2007). p300 was cloned

from pCDNA3.1-p300 (kindly provided by Warner Greene; Addgene plasmid

23252) to pFLAG, resulting in pFLAG-p300. pFLAG-TIP60 K274R, K274Q,

and pFLAG-p300 F1504A were constructed using the QuikChange Site-

Directed Mutagenesis Kit (Stratagene) and verified by sequencing.

Cell Culture and Transfection

293T cells were grown in RPMI-1640 medium supplemented with 10% heat-

inactivated fetal bovine serum and antibiotics (1% penicillin/streptomycin;

Invitrogen) at 37�C in a humidified incubator with 5% CO2 (v/v). Cells

were grown to 80% confluency, and transient transfection was carried out

using a mixture of 6 mg DNA and 18 ml FuGENE 6 (Roche) according to

manufacturer’s instructions. Twenty-four hours after transfection, cells were

washed twice with PBS, and cell lysates were then prepared for western

blot analysis.



Immunoprecipitation

Cells were lysed in modified RIPA buffer (20 mM Tris-Cl [pH 7.5], 2 mM EDTA,

420 mM NaCl, and 1% NP40). After centrifugation, the soluble fractions were

collected and incubated with anti-HA or anti-FLAG agarose (Sigma-Aldrich)

overnight at 4�C. The precipitates were then washed three times with modified

RIPA buffer and boiled for 5 min in SDS loading buffer. Samples were analyzed

by SDS-PAGE, transferred to nitrocellulose membrane (Millipore), and probed

with antibodies as indicated. Immunocomplexes were detected using Immo-

bilon Western Chemiluminescent horseradish peroxidase (HRP) Substrate

(Millipore).

Flow Cytometry

Spleen, axillary and inguinal lymph node, mesenteric lymph node, and thymus

of 18- to 21-day-old male mice were collected for single-cell suspension. Cells

were stained with anti-CD4-percp and CD8-AF700 (eBioscience) and sub-

jected to flow cytometry with fluorescence-activated cell sorting (FACS) LSR

(BD Biosciences). FACS data were analyzed with FlowJo software (Tree Star).

Histology

Lung and liver tissues were fixed with 10% neutral-buffered formalin and

embedded in paraffin. Sections were deparaffinized and stained with H&E

by the Cell Imaging Core in the Abramson Cancer Research Institute.

CD4+CD25+ Suppression Assays

CD4+ T cells were enriched from splenocytes usingMACS separation (Miltenyi

Biotec), and CD4+CD25-CD45RBhigh Teff cells and CD4+CD5+CD45RBlow

Treg cells were separated from CD4+ cells, respectively, by FACSAria II (BD

Biosciences), yielding a purity of �97% for both cells.

Luciferase Assay

Luciferase assays were performed as previously described by Li et al. (2007).

Cells were transfected in a 12-well plate with pG5-luc, MSV-b-gal, pBIND-

FOXP3, pFLAG-TIP60, and pFLAG-p300 as indicated. Twenty-four hours after

transfection, cells were washed twice with PBS and lysed in 100 ml passive

lysis buffer for 15 min. Luciferase and b-gal activities were then determined

separately using the luciferase assay system and the galactosidase enzyme

assay system, respectively (Promega).
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