3,403 research outputs found

    A Monte-Carlo simulation of the equilibrium beam polarization in ultra-high energy electron (positron) storage rings

    Get PDF
    With the recently emerging global interest in building a next generation of circular electron-positron colliders to study the properties of the Higgs boson, and other important topics in particle physics at ultra-high beam energies, it is also important to pursue the possibility of implementing polarized beams at this energy scale. It is therefore necessary to set up simulation tools to evaluate the beam polarization at these ultra-high beam energies. In this paper, a Monte-Carlo simulation of the equilibrium beam polarization based on the Polymorphic Tracking Code(PTC) (Schmidt et al., 2002 [1]) is described. The simulations are for a model storage ring with parameters similar to those of proposed circular colliders in this energy range, and they are compared with the suggestion (Derbenev et al., 1978 [2]) that there are different regimes for the spin dynamics underlying the polarization of a beam in the presence of synchrotron radiation at ultra-high beam energies. In particular, it has been suggested that the so-called "correlated" crossing of spin resonances during synchrotron oscillations at current energies, evolves into "uncorrelated" crossing of spin resonances at ultra-high energies.Comment: submitted to and accepted by Nucl. Instrum. Meth.

    Enhanced Feedback Iterative Decoding of Sparse Quantum Codes

    Full text link
    Decoding sparse quantum codes can be accomplished by syndrome-based decoding using a belief propagation (BP) algorithm.We significantly improve this decoding scheme by developing a new feedback adjustment strategy for the standard BP algorithm. In our feedback procedure, we exploit much of the information from stabilizers, not just the syndrome but also the values of the frustrated checks on individual qubits of the code and the channel model. Furthermore we show that our decoding algorithm is superior to belief propagation algorithms using only the syndrome in the feedback procedure for all cases of the depolarizing channel. Our algorithm does not increase the measurement overhead compared to the previous method, as the extra information comes for free from the requisite stabilizer measurements.Comment: 10 pages, 11 figures, Second version, To be appeared in IEEE Transactions on Information Theor
    • ā€¦
    corecore