52 research outputs found

    Nickell Bias in Panel Local Projection: Financial Crises Are Worse Than You Think

    Full text link
    Local Projection is widely used for impulse response estimation, with the Fixed Effect (FE) estimator being the default for panel data. This paper highlights the presence of Nickell bias for all regressors in the FE estimator, even if lagged dependent variables are absent in the regression. This bias is the consequence of the inherent panel predictive specification. We recommend using the split-panel jackknife estimator to eliminate the asymptotic bias and restore the standard statistical inference. Revisiting three macro-finance studies on the linkage between financial crises and economic contraction, we find that the FE estimator substantially underestimates the post-crisis economic losses

    The boosted HP filter is more general than you might think

    Get PDF
    The global financial crisis and Covid recession have renewed discussion concerning trend-cycle discovery in macroeconomic data, and boosting has recently upgraded the popular HP filter to a modern machine learning device suited to data-rich and rapid computational environments. This paper sheds light on its versatility in trend-cycle determination, explaining in a simple manner both HP filter smoothing and the consistency delivered by boosting for general trend detection. Applied to a universe of time series in FRED databases, boosting outperforms other methods in timely capturing downturns at crises and recoveries that follow. With its wide applicability the boosted HP filter is a useful automated machine learning addition to the macroeconometric toolkit

    SHERF: Generalizable Human NeRF from a Single Image

    Full text link
    Existing Human NeRF methods for reconstructing 3D humans typically rely on multiple 2D images from multi-view cameras or monocular videos captured from fixed camera views. However, in real-world scenarios, human images are often captured from random camera angles, presenting challenges for high-quality 3D human reconstruction. In this paper, we propose SHERF, the first generalizable Human NeRF model for recovering animatable 3D humans from a single input image. SHERF extracts and encodes 3D human representations in canonical space, enabling rendering and animation from free views and poses. To achieve high-fidelity novel view and pose synthesis, the encoded 3D human representations should capture both global appearance and local fine-grained textures. To this end, we propose a bank of 3D-aware hierarchical features, including global, point-level, and pixel-aligned features, to facilitate informative encoding. Global features enhance the information extracted from the single input image and complement the information missing from the partial 2D observation. Point-level features provide strong clues of 3D human structure, while pixel-aligned features preserve more fine-grained details. To effectively integrate the 3D-aware hierarchical feature bank, we design a feature fusion transformer. Extensive experiments on THuman, RenderPeople, ZJU_MoCap, and HuMMan datasets demonstrate that SHERF achieves state-of-the-art performance, with better generalizability for novel view and pose synthesis.Comment: Accepted by ICCV2023. Project webpage: https://skhu101.github.io/SHERF

    PrimDiffusion: Volumetric Primitives Diffusion for 3D Human Generation

    Full text link
    We present PrimDiffusion, the first diffusion-based framework for 3D human generation. Devising diffusion models for 3D human generation is difficult due to the intensive computational cost of 3D representations and the articulated topology of 3D humans. To tackle these challenges, our key insight is operating the denoising diffusion process directly on a set of volumetric primitives, which models the human body as a number of small volumes with radiance and kinematic information. This volumetric primitives representation marries the capacity of volumetric representations with the efficiency of primitive-based rendering. Our PrimDiffusion framework has three appealing properties: 1) compact and expressive parameter space for the diffusion model, 2) flexible 3D representation that incorporates human prior, and 3) decoder-free rendering for efficient novel-view and novel-pose synthesis. Extensive experiments validate that PrimDiffusion outperforms state-of-the-art methods in 3D human generation. Notably, compared to GAN-based methods, our PrimDiffusion supports real-time rendering of high-quality 3D humans at a resolution of 512×512512\times512 once the denoising process is done. We also demonstrate the flexibility of our framework on training-free conditional generation such as texture transfer and 3D inpainting.Comment: NeurIPS 2023; Project page https://frozenburning.github.io/projects/primdiffusion/ Code available at https://github.com/FrozenBurning/PrimDiffusio

    Performance of a new Candida anti-mannan IgM and IgG assays in the diagnosis of candidemia

    Get PDF
    Candida is one of the most frequent pathogens of bloodstream infections, which is associated with high morbidity and mortality rates. Rapid immunological detection methods are essential in the early diagnosis of candidemia. Anti-mannan is one of host-derived biomarkers against cell wall components of Candida. We conducted this study to evaluate the diagnostic performance of two anti-mannan assays (IgM, IgG) for candidemia through the analysis of 40 candidemia patients, 48 participants with Candida colonization and 213 participants with neither Candida colonization nor Candida infections (13 patients with other bloodstream infections, 145 hospitalized patients and 55 healthy controls). The performance of the two assays were evaluated by calculating their sensitivity and specificity. The sensitivity ranged from 0.78 to 0.80 for the IgM assay and 0.68 to 0.75 for the IgG assay. The specificity ranged from 0.97 to 0.98 for the IgM assay and 0.91 to 0.94 for the IgG assay. The diagnostic performance of the anti-mannan IgM assay was better than that of IgG, with higher sensitivity and specificity. Combining the two assays (positive results of single or both assays are both considered as positive) could improve the sensitivity up to 0.93 (0.79-0.98) and only slightly reduce the specificity (0.93(0.89-0.95)). The anti-mannan IgM, IgG assays are rapid and cost-effective assays that may be probably useful in the diagnosis of candidemia

    Machine learning-based evaluation of application value of pulse wave parameter model in the diagnosis of hypertensive disorder in pregnancy

    Get PDF
    Hypertensive disorder in pregnancy (HDP) remains a major health burden, and it is associated with systemic cardiovascular adaptation. The pulse wave is an important basis for evaluating the status of the human cardiovascular system. This research aims to evaluate the application value of pulse waves in the diagnosis of hypertensive disorder in pregnancy.This research a retrospective study of pregnant women who attended prenatal care and labored at Beijing Haidian District Maternal and Child Health Hospital. We extracted maternal hemodynamic factors and measured the pulse wave of the pregnant women. We developed an HDP predictive model by using support vector machine algorithms at five-gestational-week stages.At five-gestational-week stages, the area under the receiver operating characteristic curve (AUC) of the predictive model with pulse wave parameters was higher than that of the predictive model with hemodynamic factors. The AUC values of the predictive model with pulse wave parameters were 0.77 (95% CI 0.64 to 0.9), 0.83 (95% CI 0.77 to 0.9), 0.85 (95% CI 0.81 to 0.9), 0.93 (95% CI 0.9 to 0.96) and 0.88 (95% CI 0.8 to 0.95) at five-gestational-week stages, respectively. Compared to the predictive models with hemodynamic factors, the predictive model with pulse wave parameters had better prediction effects on HDP.Pulse waves had good predictive effects for HDP and provided appropriate guidance and a basis for non-invasive detection of HDP

    SMPLer-X: Scaling Up Expressive Human Pose and Shape Estimation

    Full text link
    Expressive human pose and shape estimation (EHPS) unifies body, hands, and face motion capture with numerous applications. Despite encouraging progress, current state-of-the-art methods still depend largely on a confined set of training datasets. In this work, we investigate scaling up EHPS towards the first generalist foundation model (dubbed SMPLer-X), with up to ViT-Huge as the backbone and training with up to 4.5M instances from diverse data sources. With big data and the large model, SMPLer-X exhibits strong performance across diverse test benchmarks and excellent transferability to even unseen environments. 1) For the data scaling, we perform a systematic investigation on 32 EHPS datasets, including a wide range of scenarios that a model trained on any single dataset cannot handle. More importantly, capitalizing on insights obtained from the extensive benchmarking process, we optimize our training scheme and select datasets that lead to a significant leap in EHPS capabilities. 2) For the model scaling, we take advantage of vision transformers to study the scaling law of model sizes in EHPS. Moreover, our finetuning strategy turn SMPLer-X into specialist models, allowing them to achieve further performance boosts. Notably, our foundation model SMPLer-X consistently delivers state-of-the-art results on seven benchmarks such as AGORA (107.2 mm NMVE), UBody (57.4 mm PVE), EgoBody (63.6 mm PVE), and EHF (62.3 mm PVE without finetuning). Homepage: https://caizhongang.github.io/projects/SMPLer-X/Comment: Homepage: https://caizhongang.github.io/projects/SMPLer-X

    SynBody: Synthetic Dataset with Layered Human Models for 3D Human Perception and Modeling

    Full text link
    Synthetic data has emerged as a promising source for 3D human research as it offers low-cost access to large-scale human datasets. To advance the diversity and annotation quality of human models, we introduce a new synthetic dataset, SynBody, with three appealing features: 1) a clothed parametric human model that can generate a diverse range of subjects; 2) the layered human representation that naturally offers high-quality 3D annotations to support multiple tasks; 3) a scalable system for producing realistic data to facilitate real-world tasks. The dataset comprises 1.2M images with corresponding accurate 3D annotations, covering 10,000 human body models, 1,187 actions, and various viewpoints. The dataset includes two subsets for human pose and shape estimation as well as human neural rendering. Extensive experiments on SynBody indicate that it substantially enhances both SMPL and SMPL-X estimation. Furthermore, the incorporation of layered annotations offers a valuable training resource for investigating the Human Neural Radiance Fields (NeRF).Comment: Accepted by ICCV 2023. Project webpage: https://synbody.github.io

    Digital Life Project: Autonomous 3D Characters with Social Intelligence

    Full text link
    In this work, we present Digital Life Project, a framework utilizing language as the universal medium to build autonomous 3D characters, who are capable of engaging in social interactions and expressing with articulated body motions, thereby simulating life in a digital environment. Our framework comprises two primary components: 1) SocioMind: a meticulously crafted digital brain that models personalities with systematic few-shot exemplars, incorporates a reflection process based on psychology principles, and emulates autonomy by initiating dialogue topics; 2) MoMat-MoGen: a text-driven motion synthesis paradigm for controlling the character's digital body. It integrates motion matching, a proven industry technique to ensure motion quality, with cutting-edge advancements in motion generation for diversity. Extensive experiments demonstrate that each module achieves state-of-the-art performance in its respective domain. Collectively, they enable virtual characters to initiate and sustain dialogues autonomously, while evolving their socio-psychological states. Concurrently, these characters can perform contextually relevant bodily movements. Additionally, a motion captioning module further allows the virtual character to recognize and appropriately respond to human players' actions. Homepage: https://digital-life-project.com/Comment: Homepage: https://digital-life-project.com

    Ultrathin Si/CNTs Paper-Like Composite for Flexible Li-Ion Battery Anode With High Volumetric Capacity

    Get PDF
    Thin and lightweight flexible lithium-ion batteries (LIBs) with high volumetric capacities are crucial for the development of flexible electronic devices. In the present work, we reported a paper-like ultrathin and flexible Si/carbon nanotube (CNT) composite anode for LIBs, which was realized by conformal electrodeposition of a thin layer of silicon on CNTs at ambient temperature. This method was quite simple and easy to scale up with low cost as compared to other deposition techniques, such as sputtering or CVD. The flexible Si/CNT composite exhibited high volumetric capacities in terms of the total volume of active material and current collector, surpassing the most previously reported Si-based flexible electrodes at various rates. In addition, the poor initial coulombic efficiency of the Si/CNT composites can be effectively improved by prelithiation treatment and a commercial red LED can be easily lighted by a full pouch cell using a Si/CNT composite as a flexible anode under flat or bent states. Therefore, the ultrathin and flexible Si/CNT composite is highly attractive as an anode material for flexible LIBs
    • …
    corecore