7,985 research outputs found
Exotic mesons from quantum chromodynamics with improved gluon and quark actions on the anisotropic lattice
Hybrid (exotic) mesons, which are important predictions of quantum
chromodynamics (QCD), are states of quarks and anti-quarks bound by excited
gluons. First principle lattice study of such states would help us understand
the role of ``dynamical'' color in low energy QCD and provide valuable
information for experimental search for these new particles. In this paper, we
apply both improved gluon and quark actions to the hybrid mesons, which might
be much more efficient than the previous works in reducing lattice spacing
error and finite volume effect. Quenched simulations were done at
and on a anisotropic lattice using our PC cluster. We
obtain MeV for the mass of the hybrid meson
in the light quark sector, and Mev in the
charm quark sector; the mass splitting between the hybrid meson in the charm quark sector and the spin averaged S-wave charmonium mass
is estimated to be MeV. As a byproduct, we obtain MeV for the mass of a P-wave or
meson and MeV for the mass of a P-wave meson, which are comparable to their experimental value 1426 MeV for the
meson. The first error is statistical, and the second one is
systematical. The mixing of the hybrid meson with a four quark state is also
discussed.Comment: 12 pages, 3 figures. Published versio
Cooperative and Distributed Localization for Wireless Sensor Networks in Multipath Environments
We consider the problem of sensor localization in a wireless network in a
multipath environment, where time and angle of arrival information are
available at each sensor. We propose a distributed algorithm based on belief
propagation, which allows sensors to cooperatively self-localize with respect
to one single anchor in a multihop network. The algorithm has low overhead and
is scalable. Simulations show that although the network is loopy, the proposed
algorithm converges, and achieves good localization accuracy
Helicity Observation of Weak and Strong Fields
We report in this letter our analysis of a large sample of photospheric
vector magnetic field measurements. Our sample consists of 17200 vector
magnetograms obtained from January 1997 to August 2004 by Huairou Solar
Observing Station of the Chinese National Astronomical Observatory. Two
physical quantities, and current helicity, are calculated and their
signs and amplitudes are studied in a search for solar cycle variations.
Different from other studies of the same type, we calculate these quantities
for weak () fields separately. For
weak fields, we find that the signs of both and current helicity are
consistent with the established hemispheric rule during most years of the solar
cycle and their magnitudes show a rough tendency of decreasing with the
development of solar cycle. Analysis of strong fields gives an interesting
result: Both and current helicity present a sign opposite to that of
weak fields. Implications of these observations on dynamo theory and helicity
production are also briefly discussed.Comment: accepted for publication in ApJ Lette
Distributed Local Linear Parameter Estimation using Gaussian SPAWN
We consider the problem of estimating local sensor parameters, where the
local parameters and sensor observations are related through linear stochastic
models. Sensors exchange messages and cooperate with each other to estimate
their own local parameters iteratively. We study the Gaussian Sum-Product
Algorithm over a Wireless Network (gSPAWN) procedure, which is based on belief
propagation, but uses fixed size broadcast messages at each sensor instead.
Compared with the popular diffusion strategies for performing network parameter
estimation, whose communication cost at each sensor increases with increasing
network density, the gSPAWN algorithm allows sensors to broadcast a message
whose size does not depend on the network size or density, making it more
suitable for applications in wireless sensor networks. We show that the gSPAWN
algorithm converges in mean and has mean-square stability under some technical
sufficient conditions, and we describe an application of the gSPAWN algorithm
to a network localization problem in non-line-of-sight environments. Numerical
results suggest that gSPAWN converges much faster in general than the diffusion
method, and has lower communication costs, with comparable root mean square
errors
Evolutionary History of the Photolyase/Cryptochrome Superfamily in Eukaryotes
Background
Photolyases and cryptochromes are evolutionarily related flavoproteins, which however perform distinct physiological functions. Photolyases (PHR) are evolutionarily ancient enzymes. They are activated by light and repair DNA damage caused by UV radiation. Although cryptochromes share structural similarity with DNA photolyases, they lack DNA repair activity. Cryptochrome (CRY) is one of the key elements of the circadian system in animals. In plants, CRY acts as a blue light receptor to entrain circadian rhythms, and mediates a variety of light responses, such as the regulation of flowering and seedling growth.
Results
We performed a comprehensive evolutionary analysis of the CRY/PHR superfamily. The superfamily consists of 7 major subfamilies: CPD class I and CPD class II photolyases, (6-4) photolyases, CRY-DASH, plant PHR2, plant CRY and animal CRY. Although the whole superfamily evolved primarily under strong purifying selection (average omega = 0.0168), some subfamilies did experience strong episodic positive selection during their evolution. Photolyases were lost in higher animals that suggests natural selection apparently became weaker in the late stage of evolutionary history. The evolutionary time estimates suggested that plant and animal CRYs evolved in the Neoproterozoic Era (similar to 1000-541 Mya), which might be a result of adaptation to the major climate and global light regime changes occurred in that period of the Earth's geological history.published_or_final_versio
Distribution of Spectral Lags in Gamma Ray Bursts
Using the data acquired in the Time To Spill (TTS) mode for long gamma-ray
bursts (GRBs) collected by the Burst and Transient Source Experiment on board
the Compton Gamma Ray Observatory (BATSE/CGRO), we have carefully measured
spectral lags in time between the low (25-55 keV) and high (110-320 keV) energy
bands of individual pulses contained in 64 multi-peak GRBs. We find that the
temporal lead by higher-energy gamma-ray photons (i.e., positive lags) is the
norm in this selected sample set of long GRBs. While relatively few in number,
some pulses of several long GRBs do show negative lags. This distribution of
spectral lags in long GRBs is in contrast to that in short GRBs. This apparent
difference poses challenges and constraints on the physical mechanism(s) of
producing long and short GRBs. The relation between the pulse peak count rates
and the spectral lags is also examined. Observationally, there seems to be no
clear evidence for systematic spectral lag-luminosity connection for pulses
within a given long GRB.Comment: 20 pages, 4 figure
Efficient Scheduling for SDMG CIOQ Switches
Combined input and output queuing (CIOQ) switches are being considered as high-performance switch architectures due to their ability to achieve 100% throughput and perfectly emulate output queuing (OQ) switch performance with a small speedup factor S. To realize a speedup factor S, a conventional CIOQ switch requires the switching fabric and memories to operate S times faster than the line rate. In this paper, we propose to use a CIOQ switch with space-division multiplexing expansion and grouped input/output ports (SDMG CIOQ switch for short) to realize speedup while only requiring the switching fabric and memories to operate at the line rate. The cell scheduling problem for the SDMG CIOQ switch is abstracted as a bipartite k-matching problem. Using fluid model techniques, we prove that any maximal size k-matching algorithm on an SDMG CIOQ switch with an expansion factor 2 can achieve 100% throughput assuming input line arrivals satisfy the strong law of large numbers (SLLN) and no input/output line is oversubscribed. We further propose an efficient and starvation-free maximal size k-matching scheduling algorithm, kFRR, for the SDMG CIOQ switch. Simulation results show that kFRR achieves 100% throughput for SDMG CIOQ switches with an expansion factor 2 under two SLLN traffic models, uniform traffic and polarized traffic, confirming our analysis
- âŠ