251 research outputs found

    An optimal extension of Perelman's comparison theorem for quadrangles and its applications

    Full text link
    In this paper we discuss an extension of Perelman's comparison for quadrangles. Among applications of this new comparison theorem, we study the equidistance evolution of hypersurfaces in Alexandrov spaces with non-negative curvature. We show that, in certain cases, the equidistance evolution of hypersurfaces become totally convex relative to a bigger sub-domain. An optimal extension of 2nd variational formula for geodesics by Petrunin will be derived for the case of non-negative curvature. In addition, we also introduced the generalized second fundament forms for subsets in Alexandrov spaces. Using this new notion, we will propose an approach to study two open problems in Alexandrov geometry.Comment: We corrected some inaccurate statements and definitions about development maps related to Corollary 2.4, based on Professor Stephanie Alexander's suggestion

    Analysis of the Fabrication Conditions in Organic Field-Effect Transistors

    Get PDF
    Polymer-based organic field-effect transistors have raised substantial awareness because they enable low-cost, solution processing techniques, and have the potential to be implemented in flexible, disposable organic electronic devices. The performance of these devices is highly dependent on the processing conditions, as well as the intrinsic properties of the polymer. Processing conditions play an important role in semiconductor film formation and device performance. These factors may provide an important link between structure and performance. In this study, an empirical analysis tool, Process Scout, was applied to assess processing factors such as polymer concentration and silicon modification. This sanctioned the creation of a realistic optimization model because common variance was not assumed and the mobility was capably analyzed in the real space. After the analysis of the processing conditions, it was evident that further study on the effect of humidity on performance must be conducted to account for the variance between similarly fabricated devices. The developed process may be applied to expand the study of other organic semiconductors. This process is the first step in creating a standard fabrication protocol, allowing organic field-effect transistors to prosper

    Synthesis of Healable Organic Semiconductor Through Dioxaborolane Bond

    Get PDF
    The field of organic semiconductors have gained enormous attention the past few decades. Organic materials offer numerous advantages over their inorganic counterparts. Recently a number of works have demonstrated organic semiconductors with healable properties. We aim to investigate the healable ability of an organic semiconductor by mimicking a vitrimer system through the reversible dioxaborolane bond. Vitrimers are polymers with reversible crosslink system. It has been reported that the use of the borane-oxygen bond as the crosslink showed good mechanical performance. The electrical properties will be inspected for the vitrimer-like polymer. In this report we describe a Diketopyrrolopyrrole base polymer incorporating reversible dioxaborolane bonds synthesized through borane esterification. The electrical properties and the healing properties of the polymer will be investigated. Here, we present the progress of synthesizing to the monomer, and we report the trials for the reactions. The predicted result for the overall yield of the monomer is 30-40%

    Thienoisatin Oligomers as N-Type Molecular Semiconductors

    Get PDF
    Organic field effect transistors (OFETs) offer many advantages compared to traditional inorganic transistors, such as flexibility and solution processability. In this study we design and synthesize two thienoisatin-based organic semiconducting small molecules, then investigate their electronic properties in n-type OFETs. To introduce n-type charge transport, electron-withdrawing dicarbonitrile moieties were installed on thienoisoindigo and bis-thienoisatin molecules, which led to a quinoidal conjugation on thienoisoindigo, while maintaining an aromatic conjugation on the bis-thienoisatin. Following the syntheses, the molecules were characterized to determine highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) levels via cyclic voltammetry, as well as any potential radical properties

    Facile Synthesis of Nitrogen-doped Porous Carbon for Selective CO2 Capture

    Get PDF
    AbstractSolid-state post-combustion CO2 sorbents have certain advantages over traditional aqueous amine systems, including reduced regeneration energy since vaporization of liquid water is avoided, tunable pore morphology, and greater chemical variability. We report here an ordered mesoporous nitrogen-doped carbon made by the co- assembly of a modified-pyrrole and triblock copolymer through a soft-templating method, which is facile, economic, and fast compared to the hard-template approach. A high surface area mesoporous carbon was achieved, which is comparable to the silica counterpart. This porous carbon, with a Brunauer–Emmett–Teller (BET) specific surface area of 804.5 m2 g-1, exhibits large CO2 capacities (298K) of 1.0 and 3.1 mmol g-1 at 0.1 and 1bar, respectively, and excellent CO2/N2 selectivity of 51.4. The porous carbon can be fully regenerated solely by inert gas purging without heating. It is stable for multiple adsorption/desorption cycles without reduction in CO2 capacity. These desirable properties render the nitrogen-doped hierarchical porous carbon a promising material for post-combustion CO2 capture

    Design and testing of sorbents for CO2 separation of post-combustion and natural gas sweetening applications

    Get PDF
    In post-combustion processes, sorbents with both high capacity and selectivity are required for reducing the cost of carbon capture. Although physisorbents have the advantage of low energy consumption for regeneration, it remains a challenge to obtain both high capacity and sufficient CO2/N2 selectivity at the same time. A novel N-doped hierarchical carbon has been developed, which exhibits record-high Henry’s law CO2/N2 selectivity among physisorptive carbons while having a high CO2 adsorption capacity. Specifically, the synthesis involves the rational design of a modified pyrrole molecule that can co-assemble with the soft Pluronic template via hydrogen bonding and electrostatic interactions to give rise to mesopores followed by carbonization. The low-temperature carbonization and activation processes allow for the development of ultra-small pores (d2 affinity. Furthermore, the described work provides a strategy to initiate the development of rationally-designed porous conjugated polymer structures and carbon-based materials for various potential applications. In addition to post-combustion capture, natural gas sweetening is another topic of interest. Natural gas, having the lowest carbon intensity compared to coal and petroleum, is projected to increase in production and consumption in the coming decades. However, a drawback associated with natural gas is that it contains considerable amounts of CO2 at the recovery well, making on-site CO2 capture necessary. Solid sorbents are advantageous over traditional amine scrubbing due to their relatively low regeneration energies and non-corrosive nature. However, it remains a challenge to improve the sorbent’s CO2 capacity at elevated pressures relevant to natural gas purification. A series of porous carbons have been developed, which were derived from an intrinsic 3D hierarchical nanostructured polymer hydrogel, with simple and effective tunability over the pore size distribution. The optimized surface area reached a record-high of 4196 m2 g-1 among carbon-based materials. This high surface area along with the abundant micro/narrow mesopores (1.94 cm3 g-1 with d \u3c 4 nm) results in a record-high CO2 capacity (28.3 mmol g-1 at 25 °C and 30 bar) among carbons. This carbon also showed reasonable CO2/CH4 selectivity and excellent cyclability. In addition, this work for the first time combines experimental studies with first-principle molecular simulations for high-pressure CO2 adsorption on porous sorbents. It was found that at elevated pressures, the CO2 density in the adsorbed phase is significantly enhanced in the micro- and narrow mesopores with quantitative values provided for CO2 density. Furthermore, surface nitrogen functionalities have a trivial contribution to the CO2 uptake at high pressures. These findings emphasize the importance of being able to tune a sorbent’s pore size to achieve high CO2 uptake. Thus, the simulation studies help in our understanding of our sorbent’s superior performance as well as provides useful insight into future sorbent development
    • …
    corecore