Engineering Conferences International ECI Digital Archives

CO2 Summit II: Technologies and Opportunities

Proceedings

Spring 4-13-2016

Design and testing of sorbents for CO2 separation of post-combustion and natural gas sweetening applications

Jiajun He Stanford University

John To Stanford University

Peter Psarras Stanford University

Jianguo Mei Stanford University

Jen Wilcox Stanford University

Follow this and additional works at: http://dc.engconfintl.org/co2_summit2 Part of the <u>Environmental Engineering Commons</u>

Recommended Citation

Jiajun He, John To, Peter Psarras, Jianguo Mei, and Jen Wilcox, "Design and testing of sorbents for CO2 separation of post-combustion and natural gas sweetening applications" in "CO2 Summit II: Technologies and Opportunities", Holly Krutka, Tri-State Generation & Transmission Association Inc. Frank Zhu, UOP/Honeywell Eds, ECI Symposium Series, (2016). http://dc.engconfintl.org/ co2_summit2/34

This Abstract and Presentation is brought to you for free and open access by the Proceedings at ECI Digital Archives. It has been accepted for inclusion in CO2 Summit II: Technologies and Opportunities by an authorized administrator of ECI Digital Archives. For more information, please contact franco@bepress.com.

SORBENT DESIGN AND TESTING FOR CO_2 SEPARATION FOR POST-COMBUSTION AND NATURAL GAS SWEETENING APPLICATIONS

CO2 SUMMIT II: TECHNOLOGIES AND OPPORTUNITIES APRIL 10-14, 2016 SANTA ANA PUEBLO, NEW MEXICO

JENNIFER WILCOX

Stanford University

The Team – Coupled Experiments and Theory Synthesis, Characterization, Testing and Monte Carlo

PhD Students Jiajun He John To Chris Lyons

Postgrad Researchers Peter Psarras

Objectives

- Develop porous carbons targeting specific CO₂ capture processes
- Optimize the carbon properties for enhanced capture performance
- Investigate the roles of the sorbent's textures and functionalities in the capture performance

Post-combustion capture¹

- Low CO₂ partial pressures
- Trace acid gas (SOx, NOx, etc.)

¹To et al., J. Amer. Chem. Soc., 2015

Natural gas sweetening

- High CO₂ partial pressures
- Sometimes contains H₂S

Closer Look at Heat Properties

Material	Heat Capacity (J/g K)	Thermal Conductivity W/ m K	Thermal Diffusivity (<u>mm²</u> /s)	Density (g/cm₃)
Graphene	0.7	3000-5000	2600	2.1
Graphene Oxide	0.71	2000	1300	2.2
MWNTs	0.7	> 3000	2000	2.1
Zeolite 4A MOF-5 Mesoporous Silica	0.92 0.72 1.1-1.7	0.14 0.32 0.2-0.3	0.38 0.75 0.08	.35 – 1.5 0.59 2.2
Water	4.18	0.6	0.14	1
Diamond	0.5091	2200	1200	3.5
Iron	0.45	72	20	7.87
Copper	0.385	380	110	8.94

Assume:

Heat of regeneration = $C_p \Delta T + \Delta H$

heating up all material in system from T_1 to T_2 + breaking the CO₂ interaction

Sorbent Design Depends on Application

optimal pore size depends upon dilution

2 Mechanisms Impacting CO₂ Uptake

Hierarchal Carbons as a CO₂ Adsorbent

- Tunable pore sizes and distribution
- Optimal heat properties
- High surface area and pore volume
- Flexibility on surface functionalization
- Physical adsorption not chemical
- Chemical stability
- Earth-abundant and low cost

Soft-Template Synthesis

Pore Analysis – Pore Size Distribution (PSD)

- BET surface area (SU-MAC-500, 600, 800): 942, 1500 and 2369 m² g⁻¹
- Higher act. temperature → higher surface area and total pore volume

Henry's Law CO₂/N₂ Selectivity

Sample _	CO ₂ Capacity (mmol g ⁻¹)			N ₂ Capacity (mmol g ⁻¹)	CO ₂ /N ₂
	273 K	298 K	323 K	298 K	Selectivity
SU-MAC-500	6.03	4.50	3.06	0.39	331:1
SU-MAC-600	6.49	4.18	2.54	0.37	54:1
SU-MAC-800	5.20	3.11	1.88	0.37	12:1

Literature Selectivity for AC

Activated Carbon	CO ₂ Capacity 25 C, 1 bar (mmol/g)	CO ₂ /N ₂ Selectivity	Reference
CP-2-600	3.9	5.3	Sevilla et al. Adv. Funct. Mater. 2011
AS-2-600	4.8	5.4	Sevilla et al. Energy Environ. Sci. 2011
VR-93-M	4.2	2.8	Wahby et al. ChemSusChem 2010
CN-950	4.3	30	Ma et al. J. Mater. Chem. 2013
NPC-650	3.1	12.5	Wang et al. J. Mater. Chem. A 2013
NG-7	2.7	9.1	Kemp et al. Nanotech. 2013
Bamboo-1-973	4.0	11.1	Wei et al. ChemSusChem 2012
Petro. Coke	3.5	5.1	Hu et al. Environ. Sci. Technol. 2011
Polypyrrole	4.3	15.9	Chandra et al. Chem. Commun. 2012
Polyfurfuryl alcohol	3.2	6.5	Sevilla et al. J. Colloid Interface Sci. 2012
SU-MAC-500	4.5	331	This work

Comparison of CO₂ Capture Potential

(1) Wei et al. Adv. Funct Mater. 2013. (2) Hao et al. J. Am. Chem. Soc. 2011. (3) Chandra et al. Chem. Comm. 2012. (4) Xiang et al. Nat. Commun. 2012. (5) Ma et al. J Mater Chem A 2013. (6) Patel et al. Adv. Funct. Mater. 2013. (7) Patel et al. Nat Commun 2013.

Factors Affecting Selectivity: Ultra-Microporosity

- Decreased ultra-small pore volume with increasing activation temperature
- Enhanced CO₂ adsorption potential in narrow pores

Dynamic Column Breakthrough

- 10% CO₂ + 90% N₂, 1 bar and 298 K
- Humidity and acidic impurities added to simulate various coal flue gases

Cyclability

- Regeneration: N₂ purge at 25 $^{\circ}$ C (dry)
- 10 cycles: fully recovered CO₂ capacity
- Excellent cyclability

Effect of Nitrogen Functionalities

GCMC Simulations versus Experiments

Major Findings

- Hierarchal nitrogen-doped porous carbon was made with designed pyrrole monomer via a soft-templating approach
- Promising CO₂ capture capacity and CO₂/N₂ selectivity
- Selectivity as a function of the pore size and nitrogen functionalities
- Potential in post-combustion capture (cyclability, regeneration requirements, stability towards moisture and acidic impurities, etc.)
- Computational modeling can serve as an excellent screening tool for new sorbent design

Acknowledgements

Global Climate & Energy Project STANFORD UNIVERSITY