1,207 research outputs found

    On the correlation function of the characteristic polynomials of the hermitian Wigner ensemble

    Full text link
    We consider the asymptotics of the correlation functions of the characteristic polynomials of the hermitian Wigner matrices Hn=n1/2WnH_n=n^{-1/2}W_n. We show that for the correlation function of any even order the asymptotic coincides with this for the GUE up to a factor, depending only on the forth moment of the common probability law QQ of entries Wjk\Im W_{jk}, Wjk\Re W_{jk}, i.e. that the higher moments of QQ do not contribute to the above limit.Comment: 20

    Characteristic Polynomials of Sample Covariance Matrices: The Non-Square Case

    Full text link
    We consider the sample covariance matrices of large data matrices which have i.i.d. complex matrix entries and which are non-square in the sense that the difference between the number of rows and the number of columns tends to infinity. We show that the second-order correlation function of the characteristic polynomial of the sample covariance matrix is asymptotically given by the sine kernel in the bulk of the spectrum and by the Airy kernel at the edge of the spectrum. Similar results are given for real sample covariance matrices

    Linear Statistics of Point Processes via Orthogonal Polynomials

    Get PDF
    For arbitrary β>0\beta > 0, we use the orthogonal polynomials techniques developed by R. Killip and I. Nenciu to study certain linear statistics associated with the circular and Jacobi β\beta ensembles. We identify the distribution of these statistics then prove a joint central limit theorem. In the circular case, similar statements have been proved using different methods by a number of authors. In the Jacobi case these results are new.Comment: Added references, corrected typos. To appear, J. Stat. Phy

    The leading Ruelle resonances of chaotic maps

    Full text link
    The leading Ruelle resonances of typical chaotic maps, the perturbed cat map and the standard map, are calculated by variation. It is found that, excluding the resonance associated with the invariant density, the next subleading resonances are, approximately, the roots of the equation z4=γz^4=\gamma, where γ\gamma is a positive number which characterizes the amount of stochasticity of the map. The results are verified by numerical computations, and the implications to the form factor of the corresponding quantum maps are discussed.Comment: 5 pages, 4 figures included. To appear in Phys. Rev.

    On absolute moments of characteristic polynomials of a certain class of complex random matrices

    Get PDF
    Integer moments of the spectral determinant det(zIW)2|\det(zI-W)|^2 of complex random matrices WW are obtained in terms of the characteristic polynomial of the Hermitian matrix WWWW^* for the class of matrices W=AUW=AU where AA is a given matrix and UU is random unitary. This work is motivated by studies of complex eigenvalues of random matrices and potential applications of the obtained results in this context are discussed.Comment: 41 page, typos correcte

    Ising Spins on Thin Graphs

    Get PDF
    The Ising model on ``thin'' graphs (standard Feynman diagrams) displays several interesting properties. For ferromagnetic couplings there is a mean field phase transition at the corresponding Bethe lattice transition point. For antiferromagnetic couplings the replica trick gives some evidence for a spin glass phase. In this paper we investigate both the ferromagnetic and antiferromagnetic models with the aid of simulations. We confirm the Bethe lattice values of the critical points for the ferromagnetic model on ϕ3\phi^3 and ϕ4\phi^4 graphs and examine the putative spin glass phase in the antiferromagnetic model by looking at the overlap between replicas in a quenched ensemble of graphs. We also compare the Ising results with those for higher state Potts models and Ising models on ``fat'' graphs, such as those used in 2D gravity simulations.Comment: LaTeX 13 pages + 9 postscript figures, COLO-HEP-340, LPTHE-Orsay-94-6

    Moderate deviations via cumulants

    Full text link
    The purpose of the present paper is to establish moderate deviation principles for a rather general class of random variables fulfilling certain bounds of the cumulants. We apply a celebrated lemma of the theory of large deviations probabilities due to Rudzkis, Saulis and Statulevicius. The examples of random objects we treat include dependency graphs, subgraph-counting statistics in Erd\H{o}s-R\'enyi random graphs and UU-statistics. Moreover, we prove moderate deviation principles for certain statistics appearing in random matrix theory, namely characteristic polynomials of random unitary matrices as well as the number of particles in a growing box of random determinantal point processes like the number of eigenvalues in the GUE or the number of points in Airy, Bessel, and sin\sin random point fields.Comment: 24 page
    corecore