1,247 research outputs found

    High intensity tapping regime in a frustrated lattice gas model of granular compaction

    Full text link
    In the frame of a well established lattice gas model for granular compaction, we investigate the high intensity tapping regime where a pile expands significantly during external excitation. We find that this model shows the same general trends as more sophisticated models based on molecular dynamic type simulations. In particular, a minimum in packing fraction as a function of tapping strength is observed in the reversible branch of an annealed tapping protocol.Comment: 5 pages, 4 figure

    Eigenvalue density of Wilson loops in 2D SU(N) YM

    Full text link
    In 1981 Durhuus and Olesen (DO) showed that at infinite N the eigenvalue density of a Wilson loop matrix W associated with a simple loop in two-dimensional Euclidean SU(N) Yang-Mills theory undergoes a phase transition at a critical size. The averages of det(z-W), 1/det(z-W), and det(1+uW)/(1-vW) at finite N lead to three different smoothed out expressions, all tending to the DO singular result at infinite N. These smooth extensions are obtained and compared to each other.Comment: 35 pages, 8 figure

    Higher spin fields from a worldline perspective

    Get PDF
    Higher spin fields in four dimensions, and more generally conformal fields in arbitrary dimensions, can be described by spinning particle models with a gauged SO(N) extended supergravity on the worldline. We consider here the one-loop quantization of these models by studying the corresponding partition function on the one-dimensional torus. After gauge fixing the supergravity multiplet, the partition function reduces to an integral over the corresponding moduli space which is computed using orthogonal polynomial techniques. We obtain a compact formula which gives the number of physical degrees of freedom for all N in all dimensions. As an aside we compute the physical degrees of freedom of the SO(4) = SU(2)xSU(2) model with only a SU(2) factor gauged, which has attracted some interest in the literature.Comment: 21 page

    From double Lie groupoids to local Lie 2-groupoids

    Full text link
    We apply the bar construction to the nerve of a double Lie groupoid to obtain a local Lie 2-groupoid. As an application, we recover Haefliger's fundamental groupoid from the fundamental double groupoid of a Lie groupoid. In the case of a symplectic double groupoid, we study the induced closed 2-form on the associated local Lie 2-groupoid, which leads us to propose a definition of a symplectic 2-groupoid.Comment: 23 pages, a few minor changes, including a correction to Lemma 6.

    A method to calculate correlation functions for β=1\beta=1 random matrices of odd size

    Full text link
    The calculation of correlation functions for β=1\beta=1 random matrix ensembles, which can be carried out using Pfaffians, has the peculiar feature of requiring a separate calculation depending on the parity of the matrix size N. This same complication is present in the calculation of the correlations for the Ginibre Orthogonal Ensemble of real Gaussian matrices. In fact the methods used to compute the β=1\beta=1, N odd, correlations break down in the case of N odd real Ginibre matrices, necessitating a new approach to both problems. The new approach taken in this work is to deduce the β=1\beta=1, N odd correlations as limiting cases of their N even counterparts, when one of the particles is removed towards infinity. This method is shown to yield the correlations for N odd real Gaussian matrices.Comment: 20 pages, corrected typo

    Statistics of Coulomb blockade peak spacings for a partially open dot

    Full text link
    We show that randomness of the electron wave functions in a quantum dot contributes to the fluctuations of the positions of the conductance peaks. This contribution grows with the conductance of the junctions connecting the dot to the leads. It becomes comparable with the fluctuations coming from the randomness of the single particle spectrum in the dot while the Coulomb blockade peaks are still well-defined. In addition, the fluctuations of the peak spacings are correlated with the fluctuations of the conductance peak heights.Comment: 13 pages, 1 figur

    Large N expansion of the 2-matrix model

    Get PDF
    We present a method, based on loop equations, to compute recursively all the terms in the large NN topological expansion of the free energy for the 2-hermitian matrix model. We illustrate the method by computing the first subleading term, i.e. the free energy of a statistical physics model on a discretized torus.Comment: 41 pages, 9 figures eps

    Statistics of Atmospheric Correlations

    Get PDF
    For a large class of quantum systems the statistical properties of their spectrum show remarkable agreement with random matrix predictions. Recent advances show that the scope of random matrix theory is much wider. In this work, we show that the random matrix approach can be beneficially applied to a completely different classical domain, namely, to the empirical correlation matrices obtained from the analysis of the basic atmospheric parameters that characterise the state of atmosphere. We show that the spectrum of atmospheric correlation matrices satisfy the random matrix prescription. In particular, the eigenmodes of the atmospheric empirical correlation matrices that have physical significance are marked by deviations from the eigenvector distribution.Comment: 8 pages, 9 figs, revtex; To appear in Phys. Rev.
    corecore