13,317 research outputs found

    Central limit theorem for fluctuations of linear eigenvalue statistics of large random graphs

    Full text link
    We consider the adjacency matrix AA of a large random graph and study fluctuations of the function fn(z,u)=1nk=1nexp{uGkk(z)}f_n(z,u)=\frac{1}{n}\sum_{k=1}^n\exp\{-uG_{kk}(z)\} with G(z)=(ziA)1G(z)=(z-iA)^{-1}. We prove that the moments of fluctuations normalized by n1/2n^{-1/2} in the limit nn\to\infty satisfy the Wick relations for the Gaussian random variables. This allows us to prove central limit theorem for TrG(z)\hbox{Tr}G(z) and then extend the result on the linear eigenvalue statistics Trϕ(A)\hbox{Tr}\phi(A) of any function ϕ:RR\phi:\mathbb{R}\to\mathbb{R} which increases, together with its first two derivatives, at infinity not faster than an exponential.Comment: 22 page

    Eigenvalue Spacing Distribution for the Ensemble of Real Symmetric Toeplitz Matrices

    Full text link
    Consider the ensemble of Real Symmetric Toeplitz Matrices, each entry iidrv from a fixed probability distribution p of mean 0, variance 1, and finite higher moments. The limiting spectral measure (the density of normalized eigenvalues) converges weakly to a new universal distribution with unbounded support, independent of p. This distribution's moments are almost those of the Gaussian's; the deficit may be interpreted in terms of Diophantine obstructions. With a little more work, we obtain almost sure convergence. An investigation of spacings between adjacent normalized eigenvalues looks Poissonian, and not GOE.Comment: 24 pages, 3 figure

    Eigenvalue variance bounds for Wigner and covariance random matrices

    Get PDF
    This work is concerned with finite range bounds on the variance of individual eigenvalues of Wigner random matrices, in the bulk and at the edge of the spectrum, as well as for some intermediate eigenvalues. Relying on the GUE example, which needs to be investigated first, the main bounds are extended to families of Hermitian Wigner matrices by means of the Tao and Vu Four Moment Theorem and recent localization results by Erd\"os, Yau and Yin. The case of real Wigner matrices is obtained from interlacing formulas. As an application, bounds on the expected 2-Wasserstein distance between the empirical spectral measure and the semicircle law are derived. Similar results are available for random covariance matrices

    Lax Operator for the Quantised Orthosymplectic Superalgebra U_q[osp(2|n)]

    Full text link
    Each quantum superalgebra is a quasi-triangular Hopf superalgebra, so contains a \textit{universal RR-matrix} in the tensor product algebra which satisfies the Yang-Baxter equation. Applying the vector representation π\pi, which acts on the vector module VV, to one side of a universal RR-matrix gives a Lax operator. In this paper a Lax operator is constructed for the CC-type quantum superalgebras Uq[osp(2n)]U_q[osp(2|n)]. This can in turn be used to find a solution to the Yang-Baxter equation acting on VVWV \otimes V \otimes W where WW is an arbitrary Uq[osp(2n)]U_q[osp(2|n)] module. The case W=VW=V is included here as an example.Comment: 15 page

    Spectrum of the Product of Independent Random Gaussian Matrices

    Get PDF
    We show that the eigenvalue density of a product X=X_1 X_2 ... X_M of M independent NxN Gaussian random matrices in the large-N limit is rotationally symmetric in the complex plane and is given by a simple expression rho(z,\bar{z}) = 1/(M\pi\sigma^2} |z|^{-2+2/M} for |z|<\sigma, and is zero for |z|> \sigma. The parameter \sigma corresponds to the radius of the circular support and is related to the amplitude of the Gaussian fluctuations. This form of the eigenvalue density is highly universal. It is identical for products of Gaussian Hermitian, non-Hermitian, real or complex random matrices. It does not change even if the matrices in the product are taken from different Gaussian ensembles. We present a self-contained derivation of this result using a planar diagrammatic technique for Gaussian matrices. We also give a numerical evidence suggesting that this result applies also to matrices whose elements are independent, centered random variables with a finite variance.Comment: 16 pages, 6 figures, minor changes, some references adde

    Simple matrix models for random Bergman metrics

    Full text link
    Recently, the authors have proposed a new approach to the theory of random metrics, making an explicit link between probability measures on the space of metrics on a Kahler manifold and random matrix models. We consider simple examples of such models and compute the one and two-point functions of the metric. These geometric correlation functions correspond to new interesting types of matrix model correlators. We study a large class of examples and provide in particular a detailed study of the Wishart model.Comment: 23 pages, IOP Latex style, diastatic function Eq. (22) and contact terms in Eqs. (76, 95) corrected, typos fixed. Accepted to JSTA

    Number statistics for β\beta-ensembles of random matrices: applications to trapped fermions at zero temperature

    Get PDF
    Let Pβ(V)(NI)\mathcal{P}_{\beta}^{(V)} (N_{\cal I}) be the probability that a N×NN\times N β\beta-ensemble of random matrices with confining potential V(x)V(x) has NIN_{\cal I} eigenvalues inside an interval I=[a,b]{\cal I}=[a,b] of the real line. We introduce a general formalism, based on the Coulomb gas technique and the resolvent method, to compute analytically Pβ(V)(NI)\mathcal{P}_{\beta}^{(V)} (N_{\cal I}) for large NN. We show that this probability scales for large NN as Pβ(V)(NI)exp(βN2ψ(V)(NI/N))\mathcal{P}_{\beta}^{(V)} (N_{\cal I})\approx \exp\left(-\beta N^2 \psi^{(V)}(N_{\cal I} /N)\right), where β\beta is the Dyson index of the ensemble. The rate function ψ(V)(kI)\psi^{(V)}(k_{\cal I}), independent of β\beta, is computed in terms of single integrals that can be easily evaluated numerically. The general formalism is then applied to the classical β\beta-Gaussian (I=[L,L]{\cal I}=[-L,L]), β\beta-Wishart (I=[1,L]{\cal I}=[1,L]) and β\beta-Cauchy (I=[L,L]{\cal I}=[-L,L]) ensembles. Expanding the rate function around its minimum, we find that generically the number variance Var(NI){\rm Var}(N_{\cal I}) exhibits a non-monotonic behavior as a function of the size of the interval, with a maximum that can be precisely characterized. These analytical results, corroborated by numerical simulations, provide the full counting statistics of many systems where random matrix models apply. In particular, we present results for the full counting statistics of zero temperature one-dimensional spinless fermions in a harmonic trap.Comment: 34 pages, 19 figure

    Role of the Tracy-Widom distribution in the finite-size fluctuations of the critical temperature of the Sherrington-Kirkpatrick spin glass

    Full text link
    We investigate the finite-size fluctuations due to quenched disorder of the critical temperature of the Sherrington-Kirkpatrick spin glass. In order to accomplish this task, we perform a finite-size analysis of the spectrum of the susceptibility matrix obtained via the Plefka expansion. By exploiting results from random matrix theory, we obtain that the fluctuations of the critical temperature are described by the Tracy-Widom distribution with a non-trivial scaling exponent 2/3

    Arbitrary Rotation Invariant Random Matrix Ensembles and Supersymmetry

    Full text link
    We generalize the supersymmetry method in Random Matrix Theory to arbitrary rotation invariant ensembles. Our exact approach further extends a previous contribution in which we constructed a supersymmetric representation for the class of norm-dependent Random Matrix Ensembles. Here, we derive a supersymmetric formulation under very general circumstances. A projector is identified that provides the mapping of the probability density from ordinary to superspace. Furthermore, it is demonstrated that setting up the theory in Fourier superspace has considerable advantages. General and exact expressions for the correlation functions are given. We also show how the use of hyperbolic symmetry can be circumvented in the present context in which the non-linear sigma model is not used. We construct exact supersymmetric integral representations of the correlation functions for arbitrary positions of the imaginary increments in the Green functions.Comment: 36 page

    The factorization method for systems with a complex action -a test in Random Matrix Theory for finite density QCD-

    Get PDF
    Monte Carlo simulations of systems with a complex action are known to be extremely difficult. A new approach to this problem based on a factorization property of distribution functions of observables has been proposed recently. The method can be applied to any system with a complex action, and it eliminates the so-called overlap problem completely. We test the new approach in a Random Matrix Theory for finite density QCD, where we are able to reproduce the exact results for the quark number density. The achieved system size is large enough to extract the thermodynamic limit. Our results provide a clear understanding of how the expected first order phase transition is induced by the imaginary part of the action.Comment: 27 pages, 25 figure
    corecore