146,689 research outputs found

    Matrices coupled in a chain. I. Eigenvalue correlations

    Full text link
    The general correlation function for the eigenvalues of pp complex hermitian matrices coupled in a chain is given as a single determinant. For this we use a slight generalization of a theorem of Dyson.Comment: ftex eynmeh.tex, 2 files, 8 pages Submitted to: J. Phys.

    Bulk asymptotics of skew-orthogonal polynomials for quartic double well potential and universality in the matrix model

    Full text link
    We derive bulk asymptotics of skew-orthogonal polynomials (sop) \pi^{\bt}_{m}, β=1\beta=1, 4, defined w.r.t. the weight exp(2NV(x))\exp(-2NV(x)), V(x)=gx4/4+tx2/2V (x)=gx^4/4+tx^2/2, g>0g>0 and t<0t<0. We assume that as m,Nm,N \to\infty there exists an ϵ>0\epsilon > 0, such that ϵ(m/N)λcrϵ\epsilon\leq (m/N)\leq \lambda_{\rm cr}-\epsilon, where λcr\lambda_{\rm cr} is the critical value which separates sop with two cuts from those with one cut. Simultaneously we derive asymptotics for the recursive coefficients of skew-orthogonal polynomials. The proof is based on obtaining a finite term recursion relation between sop and orthogonal polynomials (op) and using asymptotic results of op derived in \cite{bleher}. Finally, we apply these asymptotic results of sop and their recursion coefficients in the generalized Christoffel-Darboux formula (GCD) \cite{ghosh3} to obtain level densities and sine-kernels in the bulk of the spectrum for orthogonal and symplectic ensembles of random matrices.Comment: 6 page

    2048 is (PSPACE) Hard, but Sometimes Easy

    Full text link
    We prove that a variant of 2048, a popular online puzzle game, is PSPACE-Complete. Our hardness result holds for a version of the problem where the player has oracle access to the computer player's moves. Specifically, we show that for an n×nn \times n game board G\mathcal{G}, computing a sequence of moves to reach a particular configuration C\mathbb{C} from an initial configuration C0\mathbb{C}_0 is PSPACE-Complete. Our reduction is from Nondeterministic Constraint Logic (NCL). We also show that determining whether or not there exists a fixed sequence of moves S{,,,}k\mathcal{S} \in \{\Uparrow, \Downarrow, \Leftarrow, \Rightarrow\}^k of length kk that results in a winning configuration for an n×nn \times n game board is fixed-parameter tractable (FPT). We describe an algorithm to solve this problem in O(4kn2)O(4^k n^2) time.Comment: 13 pages, 11 figure

    Assessing Microfinance for Water and Sanitation: Exploring Opportunities for Sustainable Scaling Up

    Get PDF
    The objective of this study, commissioned by the Bill & Melinda Gates Foundation, is to assess the potential market for using microfinance in the water and sanitation sector, and to identify specific opportunities for potential learning, investment, and support. This report focuses on these opportunities and suggests measures that are needed for sustainable scaling up, which can be supported by the Bill & Melinda Gates Foundation and other development institutions

    A New Push-Relabel Algorithm for Sparse Networks

    Full text link
    In this paper, we present a new push-relabel algorithm for the maximum flow problem on flow networks with nn vertices and mm arcs. Our algorithm computes a maximum flow in O(mn)O(mn) time on sparse networks where m=O(n)m = O(n). To our knowledge, this is the first O(mn)O(mn) time push-relabel algorithm for the m=O(n)m = O(n) edge case; previously, it was known that push-relabel implementations could find a max-flow in O(mn)O(mn) time when m=Ω(n1+ϵ)m = \Omega(n^{1+\epsilon}) (King, et. al., SODA `92). This also matches a recent flow decomposition-based algorithm due to Orlin (STOC `13), which finds a max-flow in O(mn)O(mn) time on sparse networks. Our main result is improving on the Excess-Scaling algorithm (Ahuja & Orlin, 1989) by reducing the number of nonsaturating pushes to O(mn)O(mn) across all scaling phases. This is reached by combining Ahuja and Orlin's algorithm with Orlin's compact flow networks. A contribution of this paper is demonstrating that the compact networks technique can be extended to the push-relabel family of algorithms. We also provide evidence that this approach could be a promising avenue towards an O(mn)O(mn)-time algorithm for all edge densities.Comment: 23 pages. arXiv admin note: substantial text overlap with arXiv:1309.2525 - This version includes an extension of the result to the O(n) edge cas
    corecore