4 research outputs found

    INTRODUCING NOVEL COMBINATORIAL TARGETED THERAPIES IN MULTIPLE TYPES OF CANCER

    Get PDF
    The cancers of liver, colon and breast are amongst the top five most prevalent and most fatal worldwide. As the Raf/MEK/ERK pathway is frequently deregulated in hepatocellular carcinoma (HCC), sorafenib, a Raf kinase inhibitor, became the first systemic therapy approved for the treatment of patients with HCC. However, sorafenib only produced modest effects with low response rates in the clinic. Similarly, regorafenib, which was approved for the treatment of metastatic colorectal cancer (CRC), has had a poor response rate in the clinic. Since phosphodiesterase type 5 has been reported to be overexpressed in HCC and CRC, we hypothesized that sildenafil, a phosphodiesterase type 5 inhibitor, could enhance the toxicities of sorafenib and regorafenib in HCC and CRC cells, respectively. Our in vitro data indicated that the drugs interacted strongly to kill cancer cells via induction of ER stress, autophagy and apoptosis. In accordance with these findings, our in vivo data demonstrated a significant reduction in tumor growth. The second study in this manuscript was conducted based on the growing body of evidence about the significant contribution of EGFR and JAK/STAT signaling to the breast tumorigenesis. Our preliminary in vitro data demonstrated that the concurrent inhibition of these two pathways by lapatinib, a dual ERBB1/2 inhibitor, and ruxolitinib, a JAK1/2 inhibitor, synergistically killed breast cancer cells of all types, including the resistant triple negative subtype. Our mechanistic studies showed that the combination of ruxolitinib and lapatinib triggered cytotoxic mitophagy, and autophagy-dependent activation of BAX and BAK leading to the mitochondrial dysfunction

    [Pemetrexed + Sorafenib] lethality is increased by inhibition of ERBB1/2/3-PI3K-NFκB compensatory survival signaling

    Get PDF
    In the completed phase I trial NCT01450384 combining the anti-folate pemetrexed and the multi-kinase inhibitor sorafenib it was observed that 20 of 33 patients had prolonged stable disease or tumor regression, with one complete response and multiple partial responses. The pre-clinical studies in this manuscript were designed to determine whether [pemetrexed + sorafenib] –induced cell killing could be rationally enhanced by additional signaling modulators. Multiplex assays performed on tumor material that survived and re-grew after [pemetrexed + sorafenib] exposure showed increased phosphorylation of ERBB1 and of NFκB and IκB; with reduced IκB and elevated G-CSF and KC protein levels. Inhibition of JAK1/2 downstream of the G-CSF/KC receptors did not enhance [pemetrexed + sorafenib] lethality whereas inhibition of ERBB1/2/4 using kinase inhibitory agents or siRNA knock down of ERBB1/2/3 strongly promoted killing. Inhibition of ERBB1/2/4 blocked [pemetrexed + sorafenib] stimulated NFκB activation and SOD2 expression; and expression of IκB S32A S36A significantly enhanced [pemetrexed + sorafenib] lethality. Sorafenib inhibited HSP90 and HSP70 chaperone ATPase activities and reduced the interactions of chaperones with clients including c-MYC, CDC37 and MCL-1. In vivo, a 5 day transient exposure of established mammary tumors to lapatinib or vandetanib significantly enhanced the anti-tumor effect of [pemetrexed + sorafenib], without any apparent normal tissue toxicities. Identical data to that in breast cancer were obtained in NSCLC tumors using the ERBB1/2/4 inhibitor afatinib. Our data argue that the combination of pemetrexed, sorafenib and an ERBB1/2/4 inhibitor should be explored in a new phase I trial in solid tumor patients

    Multi-kinase inhibitors can associate with heat shock proteins through their NH2-termini by which they suppress chaperone function

    Get PDF
    We performed proteomic studies using the GRP78 chaperone-inhibitor drug AR-12 (OSU-03012) as bait. Multiple additional chaperone and chaperone-associated proteins were shown to interact with AR-12, including: GRP75, HSP75, BAG2; HSP27; ULK-1; and thioredoxin. AR-12 down-regulated in situ immuno-fluorescence detection of ATP binding chaperones using antibodies directed against the NH2-termini of the proteins but only weakly reduced detection using antibodies directed against the central and COOH portions of the proteins. Traditional SDS-PAGE and western blotting assessment methods did not exhibit any alterations in chaperone detection. AR-12 altered the sub-cellular distribution of chaperone proteins, abolishing their punctate speckled patterning concomitant with changes in protein co-localization. AR-12 inhibited chaperone ATPase activity, which was enhanced by sildenafil; inhibited chaperone - chaperone and chaperone - client interactions; and docked in silico with the ATPase domains of HSP90 and of HSP70. AR-12 combined with sildenafil in a GRP78 plus HSP27 -dependent fashion to profoundly activate an eIF2α/ATF4/CHOP/Beclin1 pathway in parallel with inactivating mTOR and increasing ATG13 phosphorylation, collectively resulting in formation of punctate toxic autophagosomes. Over-expression of [GRP78 and HSP27] prevented: AR-12 -induced activation of ER stress signaling and maintained mTOR activity; AR-12 -mediated down-regulation of thioredoxin, MCL-1 and c-FLIP-s; and preserved tumor cell viability. Thus the inhibition of chaperone protein functions by AR-12 and by multi-kinase inhibitors very likely explains why these agents have anti-tumor effects in multiple genetically diverse tumor cell types
    corecore