382 research outputs found

    Expression of FOXA1 and GATA-3 in breast cancer: the prognostic significance in hormone receptor-negative tumours

    Get PDF
    The expression of additional genes, other than oestrogen receptor (ER), may be important to the hormone-responsive phenotype of breast cancer. Microarray analyses have revealed that forkhead box A1 (FOXA1) and GATA binding protein 3 (GATA-3) are expressed in close association with ERalpha, both encoding for transcription factors with a potential involvement in the ERalpha-mediated action in breast cancer. The purpose of this study was to explore if the expression of FOXA1 and GATA-3 may provide an opportunity to stratify subsets of patients that could have better outcome, among the ERalpha-negative/poor prognosis breast cancer group.The present study was supported by a research grant (SFRH/BD/15316/ 2005 to AA) financed by the Portuguese Science and Technology Foundation (FCT). The authors thank Prof. Raquel Seruca ( coordinator from the Cancer Genetics group at IPATIMUP) for scientific assistance, Dr Jose Luis Costa (postdoctorate at IPATIMUP) for critically reading the manuscript before submission, and Dr Nuno Marcos ( PhD student at IPATIMUP) for artwork assistance

    Investigation of the Genes Involved in Antigenic Switching at the vlsE Locus in Borrelia burgdorferi: An Essential Role for the RuvAB Branch Migrase

    Get PDF
    Persistent infection by pathogenic organisms requires effective strategies for the defense of these organisms against the host immune response. A common strategy employed by many pathogens to escape immune recognition and clearance is to continually vary surface epitopes through recombinational shuffling of genetic information. Borrelia burgdorferi, a causative agent of Lyme borreliosis, encodes a surface-bound lipoprotein, VlsE. This protein is encoded by the vlsE locus carried at the right end of the linear plasmid lp28-1. Adjacent to the expression locus are 15 silent cassettes carrying information that is moved into the vlsE locus through segmental gene conversion events. The protein players and molecular mechanism of recombinational switching at vlsE have not been characterized. In this study, we analyzed the effect of the independent disruption of 17 genes that encode factors involved in DNA recombination, repair or replication on recombinational switching at the vlsE locus during murine infection. In Neisseria gonorrhoeae, 10 such genes have been implicated in recombinational switching at the pilE locus. Eight of these genes, including recA, are either absent from B. burgdorferi, or do not show an obvious requirement for switching at vlsE. The only genes that are required in both organisms are ruvA and ruvB, which encode subunits of a Holliday junction branch migrase. Disruption of these genes results in a dramatic decrease in vlsE recombination with a phenotype similar to that observed for lp28-1 or vls-minus spirochetes: productive infection at week 1 with clearance by day 21. In SCID mice, the persistence defect observed with ruvA and ruvB mutants was fully rescued as previously observed for vlsE-deficient B. burgdorferi. We report the requirement of the RuvAB branch migrase in recombinational switching at vlsE, the first essential factor to be identified in this process. These findings are supported by the independent work of Lin et al. in the accompanying article, who also found a requirement for the RuvAB branch migrase. Our results also indicate that the mechanism of switching at vlsE in B. burgdorferi is distinct from switching at pilE in N. gonorrhoeae, which is the only other organism analyzed genetically in detail. Finally, our findings suggest a unique mechanism for switching at vlsE and a role for currently unidentified B. burgdorferi proteins in this process

    Human MMP28 expression is unresponsive to inflammatory stimuli and does not correlate to the grade of intervertebral disc degeneration

    Get PDF
    BACKGROUND: MMP28 (epilysin) is a recently discovered member of the MMP (matrix metalloproteinase) family that is, amongst others, expressed in osteoarthritic cartilage and intervertebral disc (IVD) tissue. In this study the hypothesis that increased expression of MMP28 correlates with higher grades of degeneration and is stimulated by the presence of proinflammatory molecules was tested. Gene expression levels of MMP28 were investigated in traumatic and degenerative human IVD tissue and correlated to the type of disease and the degree of degeneration (Thompson grade). Quantification of MMP28 gene expression in human IVD tissue or in isolated cells after stimulation with the inflammatory mediators lipopolysaccharide (LPS), interleukin (IL)-1β, tumor necrosis factor (TNF)-α or the histondeacetylase inhibitor trichostatin A was performed by real-time RT PCR. RESULTS: While MMP28 expression was increased in individual cases with trauma or disc degeneration, there was no significant correlation between the grade of disease and MMP28 expression. Stimulation with LPS, IL-1β, TNF-α or trichostatin A did not alter MMP28 gene expression at any investigated time point or any concentration. CONCLUSIONS: Our results demonstrate that gene expression of MMP28 in the IVD is not regulated by inflammatory mechanisms, is donor-dependent and cannot be positively or negatively linked to the grade of degeneration and only weakly to the occurrence of trauma. New hypotheses and future studies are needed to find the role of MMP28 in the intervertebral disc

    Effects of standard training in the use of closed-circuit televisions in visually impaired adults: design of a training protocol and a randomized controlled trial

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Reading problems are frequently reported by visually impaired persons. A closed-circuit television (CCTV) can be helpful to maintain reading ability, however, it is difficult to learn how to use this device. In the Netherlands, an evidence-based rehabilitation program in the use of CCTVs was lacking. Therefore, a standard training protocol needed to be developed and tested in a randomized controlled trial (RCT) to provide an evidence-based training program in the use of this device.</p> <p>Methods/Design</p> <p>To develop a standard training program, information was collected by studying literature, observing training in the use of CCTVs, discussing the content of the training program with professionals and organizing focus and discussion groups. The effectiveness of the program was evaluated in an RCT, to obtain an evidence-based training program. Dutch patients (n = 122) were randomized into a treatment group: normal instructions from the supplier combined with training in the use of CCTVs, or into a control group: instructions from the supplier only. The effect of the training program was evaluated in terms of: change in reading ability (reading speed and reading comprehension), patients' skills to operate the CCTV, perceived (vision-related) quality of life and tasks performed in daily living.</p> <p>Discussion</p> <p>The development of the CCTV training protocol and the design of the RCT in the present study may serve as an example to obtain an evidence-based training program. The training program was adjusted to the needs and learning abilities of individual patients, however, for scientific reasons it might have been preferable to standardize the protocol further, in order to gain more comparable results.</p> <p>Trial registration</p> <p><url>http://www.trialregister.nl</url>, identifier: NTR1031</p

    Unlocking the power of cross-species genomic analyses: identification of evolutionarily conserved breast cancer networks and validation of preclinical models

    Get PDF
    The application of high-throughput genomic technologies has revealed that individual breast tumors display a variety of molecular features that require more personalized approaches to treatment. Several recent studies have demonstrated that a cross-species analytic approach provides a powerful means to filter through genetic complexity by identifying evolutionarily conserved genetic networks that are fundamental to the oncogenic process. Mouse-human tumor comparisons will provide insights into cellular origins of tumor subtypes, define interactive oncogenetic networks, identify potential novel therapeutic targets, and further validate as well as guide the selection of genetically engineered mouse models for preclinical testing

    Loss of the Urothelial Differentiation Marker FOXA1 Is Associated with High Grade, Late Stage Bladder Cancer and Increased Tumor Proliferation

    Get PDF
    Approximately 50% of patients with muscle-invasive bladder cancer (MIBC) develop metastatic disease, which is almost invariably lethal. However, our understanding of pathways that drive aggressive behavior of MIBC is incomplete. Members of the FOXA subfamily of transcription factors are implicated in normal urogenital development and urologic malignancies. FOXA proteins are implicated in normal urothelial differentiation, but their role in bladder cancer is unknown. We examined FOXA expression in commonly used in vitro models of bladder cancer and in human bladder cancer specimens, and used a novel in vivo tissue recombination system to determine the functional significance of FOXA1 expression in bladder cancer. Logistic regression analysis showed decreased FOXA1 expression is associated with increasing tumor stage (p<0.001), and loss of FOXA1 is associated with high histologic grade (p<0.001). Also, we found that bladder urothelium that has undergone keratinizing squamous metaplasia, a precursor to the development of squamous cell carcinoma (SCC) exhibited loss of FOXA1 expression. Furthermore, 81% of cases of SCC of the bladder were negative for FOXA1 staining compared to only 40% of urothelial cell carcinomas. In addition, we showed that a subpopulation of FOXA1 negative urothelial tumor cells are highly proliferative. Knockdown of FOXA1 in RT4 bladder cancer cells resulted in increased expression of UPK1B, UPK2, UPK3A, and UPK3B, decreased E-cadherin expression and significantly increased cell proliferation, while overexpression of FOXA1 in T24 cells increased E-cadherin expression and significantly decreased cell growth and invasion. In vivo recombination of bladder cancer cells engineered to exhibit reduced FOXA1 expression with embryonic rat bladder mesenchyme and subsequent renal capsule engraftment resulted in enhanced tumor proliferation. These findings provide the first evidence linking loss of FOXA1 expression with histological subtypes of MIBC and urothelial cell proliferation, and suggest an important role for FOXA1 in the malignant phenotype of MIBC

    Prolactin-induced mouse mammary carcinomas model estrogen resistant luminal breast cancer.

    Get PDF
    INTRODUCTION: Tumors that express estrogen receptor alpha (ERα+) comprise 75% of breast cancers in women. While treatments directed against this receptor have successfully lowered mortality rates, many primary tumors initially or later exhibit resistance. The paucity of murine models of this luminal tumor subtype has hindered studies of factors that promote their pathogenesis and modulate responsiveness to estrogen-directed therapeutics. Since epidemiologic studies closely link prolactin and the development of ERα+ tumors in women, we examined characteristics of the aggressive ERα+ and ERα- carcinomas which develop in response to mammary prolactin in a murine transgenic model (neu-related lipocalin- prolactin (NRL-PRL)). To evaluate their relationship to clinical tumors, we determined phenotypic relationships among these carcinomas, other murine models of breast cancer, and features of luminal tumors in women. METHODS: We examined a panel of prolactin-induced tumors for characteristics relevant to clinical tumors: histotype, ERα/progesterone receptor (PR) expression and estrogen responsiveness, Activating Protein 1 (AP-1) components, and phosphorylation of signal transducer and activator of transcription 5 (Stat5), extracellular signal regulated kinase (ERK) 1/2 and AKT. We compared levels of transcripts in the ERα-associated luminal signature that defines this subtype of tumors in women and transcripts enriched in various mammary epithelial lineages to other well-studied genetically modified murine models of breast cancer. Finally, we used microarray analyses to compare prolactin-induced ERα+ and ERα- tumors, and examined responsiveness to estrogen and the anti-estrogen, Faslodex, in vivo. RESULTS: Prolactin-induced carcinomas were markedly diverse with respect to histotype, ERα/PR expression, and activated signaling cascades. They constituted a heterogeneous, but distinct group of murine mammary tumors, with molecular features of the luminal subtype of human breast cancer. In contrast to morphologically normal and hyperplastic structures in NRL-PRL females, carcinomas were insensitive to ERα-mediated signals. These tumors were distinct from mouse mammary tumor virus (MMTV)-neu tumors, and contained elevated transcripts for factors associated with luminal/alveolar expansion and differentiation, suggesting that they arose from physiologic targets of prolactin. These features were shared by ERα+ and ERα- tumors, suggesting a common origin, although the former exhibited transcript profiles reflecting greater differentiation. CONCLUSIONS: Our studies demonstrate that prolactin can promote diverse carcinomas in mice, many of which resemble luminal breast cancers, providing a novel experimental model to examine the pathogenesis, progression and treatment responsiveness of this tumor subtype
    corecore