5 research outputs found

    P Wave Dispersion is Increased in Pulmonary Stenosis

    Get PDF
    Aim: The right atrium pressure load is increased in pulmonary stenosis (PS) that is a congenital anomaly and this changes the electrophysiological characteristics of the atria. However, there is not enough data on the issue of P wave dispersion (PWD) in PS. Methods: Forty- two patients diagnosed as having valvular PS with echocardiography and 33 completely healthy individuals as the control group were included in the study. P wave duration, p wave maximum (p max) and p minimum (p min) were calculated from resting electrocariography (ECG) obtained at the rate of 50 mm/sec. P wave dispersion was derived by subtracting p min from p max. The mean pressure gradient (MPG) at the pulmonary valve, structure of the valve and diameters of the right and left atria were measured with echocardiography. The data from two groups were compared with the Mann-Whitney U test and correlation analysis was performed with the Pearson correlation technique. Results: There wasn’t any statistically significance in the comparison of age, left atrial diameter and p min between two groups. While the MPG at the pulmonary valve was 43.11 ± 18.8 mmHg in PS patients, it was 8.4 ± 4.5 mmHg in the control group. While p max was 107.1 ± 11.5 in PS group, it was 98.2 ± 5.1 in control group (p=0.01), PWD was 40.4 ± 1.2 in PS group, and 27.2 ± 9.3 in the control group (p=0.01)Moreover, while the diameter of the right atrium in PS group was greater than that of the control group, (38.7 ± 3.9 vs 30.2 ± 2.5, p=0.02). We detected a correlation between PWD and pressure gradient in regression analysis. Conclusion: P wave dispersion and p max are increased in PS. While PWD was correlated with the pressure gradient that is the degree of narrowing, it was not correlated with the diameters of the right and left atria

    Evaluation of oral health status and immunological parameters of hospitalized COVID-19 patients during acute and recovery phases: A randomized clinical trial

    No full text
    Background/purpose: It is known that COVID-19 patients show many clinical oral symptoms due to the immunological mechanisms triggered by the virus. Aim of this study is to analyze the antibody response to SARS-CoV-2, and to evaluate the oral health status of hospitalized patients. Materials and methods: 160 patients with COVID-19 confirmed by SARS-CoV-2–specific RT-PCR testing and 160 healthy volunteers (HI) with similar age, gender and systemic status were included to compare the bio-chemical and oral manifestations. Oropharyngeal swab specimens were collected to evaluate the salivary interleukins (IL-1, IL-6, IL-10) and immunoglobulins (sIgA, sIgG, sIgM). Oral findings (DMFT, plaque index, salivary flow rate), socio-demographic information and systemic conditions were also recorded. Chi-square, Mann–Whitney U and Spearman's ratio tests were applied to determine the possible correlations between the factors (P = 0.05). Results: The mean DMFT scores of COVID-19 patients (12.71 ± 7.3) were significantly higher than the HI (7.39 ± 2.8), whereas cases of total or partial edentulism were more common among COVID-19 patients (P 0.05), salivary parameters were found statistically different (P < 0.05). Severe and moderate cases showed higher proinflammatory interleukin levels (IL-1 = 68.74 pg/ml, IL-6 = 53.31 pg/ml) amongst all (P < 0.05). While secretory immunoglobulins were almost depleted at baseline, (sIgA = 0.11 mg/ml, sIgG = 0.21 mg/ml, sIgM = 0.08 mg/ml) they reached to threshold levels after 4 weeks. Conclusion: Higher proinflammatory interleukin levels indicated that traces of ongoing “Cytokine Storm” in COVID-19 patients which can also be observed in oral environment. Poor oral hygiene and malnutrition due to edentulism can pave the way for having a severe COVID-19 infection
    corecore