2 research outputs found

    Guidelines for improving statistical analyses of validation datasets for plant pest diagnostic tests

    Full text link
    peer reviewedAppropriate statistical analysis of the validation data for diagnostic tests facilitates the evaluation of the performance criteria and increases the confidence in the conclusions drawn from these data. A comprehensive approach to analysing and reporting data from validation studies and inter-laboratory comparisons such as test performance studies is described. The proposed methods, including statistical analyses, presentation and interpretation of the data, are illustrated using a real dataset generated during a test performance study conducted in the framework of the European project, VALITEST. This analytical approach uses, wherever possible and whenever applicable, statistical analyses recommended by international standards illustrating their application to plant health diagnostic tests. The present work is addressed to plant health diagnosticians and researchers interested and/or involved in the validation of plant diagnostic tests, and also aims to convey the necessary information to those without a statistical background. Detailed statistical explanations are provided in the Appendices

    Facilitating the adoption of high‐throughput sequencing technologies as a plant pest diagnostic test in laboratories: A step‐by‐step description

    Get PDF
    International audienceHigh-throughput sequencing (HTS) is a powerful tool that enables the simultaneous detection and potential identification of any organisms present in a sample. The growing interest in the application of HTS technologies for routine diagnostics in plant health laboratories is triggering the development of guidelines on how to prepare laboratories for performing HTS testing. This paper describes general and technical recommendations to guide laboratories through the complex process of preparing a laboratory for HTS tests within existing quality assurance systems. From nucleic acid extractions to data analysis and interpretation, all of the steps are covered to ensure reliable and reproducible results. These guidelines are relevant for the detection and identification of any plant pest (e.g. arthropods, bacteria, fungi, nematodes, invasive plants or weeds, protozoa, viroids, viruses), and from any type of matrix (e.g. pure microbial culture, plant tissue, soil, water), regardless of the HTS technology (e.g. amplicon sequencing, shotgun sequencing) and of the application (e.g. surveillance programme, phytosanitary certification, quarantine, import control). These guidelines are written in general terms to facilitate the adoption of HTS technologies in plant pest routine diagnostics and enable broader application in all plant health fields, including research. A glossary of relevant terms is provided among the Supplementary Material
    corecore