13 research outputs found

    TDP-43 proteinopathies: a new wave of neurodegenerative diseases

    Get PDF
    Inclusions of pathogenic deposits containing TAR DNA-binding protein 43 (TDP-43) are evident in the brain and spinal cord of patients that present across a spectrum of neurodegenerative diseases. For instance, the majority of patients with sporadic amyotrophic lateral sclerosis (up to 97%) and a substantial proportion of patients with frontotemporal lobar degeneration (~45%) exhibit TDP-43 positive neuronal inclusions, suggesting a role for this protein in disease pathogenesis. In addition, TDP-43 inclusions are evident in familial ALS phenotypes linked to multiple gene mutations including the TDP-43 gene coding (TARDBP) and unrelated genes (eg, C9orf72). While TDP-43 is an essential RNA/DNA binding protein critical for RNA-related metabolism, determining the pathophysiological mechanisms through which TDP-43 mediates neurodegeneration appears complex, and unravelling these molecular processes seems critical for the development of effective therapies. This review highlights the key physiological functions of the TDP-43 protein, while considering an expanding spectrum of neurodegenerative diseases associated with pathogenic TDP-43 deposition, and dissecting key molecular pathways through which TDP-43 may mediate neurodegeneration

    Utility of Transcranial Magnetic Simulation in Studying Upper Motor Neuron Dysfunction in Amyotrophic Lateral Sclerosis

    No full text
    Amyotrophic lateral sclerosis (ALS) is characterised by progressive dysfunction of the upper and lower motor neurons. The disease can evolve over time from focal limb or bulbar onset to involvement of other regions. There is some clinical heterogeneity in ALS with various phenotypes of the disease described, from primary lateral sclerosis, progressive muscular atrophy and flail arm/leg phenotypes. Whilst the majority of ALS patients are sporadic in nature, recent advances have highlighted genetic forms of the disease. Given the close relationship between ALS and frontotemporal dementia, the importance of cortical dysfunction has gained prominence. Transcranial magnetic stimulation (TMS) is a noninvasive neurophysiological tool to explore the function of the motor cortex and thereby cortical excitability. In this review, we highlight the utility of TMS and explore cortical excitability in ALS diagnosis, pathogenesis and insights gained from genetic and variant forms of the disease

    Pathophysiology and Diagnosis of ALS: Insights from Advances in Neurophysiological Techniques

    No full text
    Amyotrophic lateral sclerosis (ALS) is a rapidly progressive and fatal neurodegenerative disorder of the motor neurons, characterized by focal onset of muscle weakness and incessant disease progression. While the presence of concomitant upper and lower motor neuron signs has been recognized as a pathognomonic feature of ALS, the pathogenic importance of upper motor neuron dysfunction has only been recently described. Specifically, transcranial magnetic stimulation (TMS) techniques have established cortical hyperexcitability as an important pathogenic mechanism in ALS, correlating with neurodegeneration and disease spread. Separately, ALS exhibits a heterogeneous clinical phenotype that may lead to misdiagnosis, particularly in the early stages of the disease process. Cortical hyperexcitability was shown to be a robust diagnostic biomarker if ALS, reliably differentiating ALS from neuromuscular mimicking disorders. The present review will provide an overview of key advances in the understanding of ALS pathophysiology and diagnosis, focusing on the importance of cortical hyperexcitability and its relationship to advances in genetic and molecular processes implicated in ALS pathogenesis

    Utility of threshold tracking transcranial magnetic stimulation in ALS

    No full text
    Upper motor neuron [UMN] and lower motor neuron [LMN] dysfunction, in the absence of sensory features, is a pathognomonic feature of amyotrophic lateral sclerosis [ALS]. Although the precise mechanisms have yet to be elucidated, one leading hypothesis is that UMN precede LMN dysfunction, which is induced by anterograde glutamatergic excitotoxicity. Transcranial magnetic stimulation (TMS) is a neurophysiological tool that provides a non-invasive and painless assessment of cortical function. Threshold tracking methodologies have been recently adopted for TMS, whereby changes in threshold rather than motor evoked potential (MEP) amplitude serve as outcome measures. This technique is reliable and provides a rapid assessment of cortical function in ALS. Utilisng the threshold tracking TMS technique, cortical hyperexcitability was demonstrated as an early feature in sporadic ALS preceding the onset of LMN dysfunction and possibly contributing to disease spread. Separately, cortical hyperexcitability was reported to precede the clinical onset of familial ALS. Of further relevance, the threshold tracking TMS technique was proven to reliably distinguish ALS from mimicking disorders, even in the presence of a comparable degree of LMN dysfunction, suggesting a diagnostic utility of TMS. Taken in total, threshold tracking TMS has provided support for a cortical involvement at the earliest detectable stages of ALS, underscoring the utility of the technique for probing the underlying pathophysiology. The present review will discuss the physiological processes underlying TMS parameters, while further evaluating the pathophysiological and diagnostic utility of threshold tracking TMS in ALS. Keywords: Amyotrophic lateral sclerosis, Cortical hyperexcitability, Threshold tracking TM

    Physiological Processes Underlying Short Interval Intracortical Facilitation in the Human Motor Cortex

    No full text
    Short interval intracortical facilitation (SICF) may be elicited by a paired pulse transcranial magnetic stimulation (TMS) paradigm, whereby a suprathreshold first stimulus (S1) precedes a perithreshold second stimulus (S2). Other facilitatory circuits can be probed by TMS such as intracranial facilitation, however the cortical contributions to these circuits may lie partially outside of M1. SICF as such represents a unique analog to M1 inhibitory circuits such as short interveal intracortical circuits. The aim of the present study was to provide insight into the physiological processes underlying the development of SICF using the threshold tracking TMS technique which was recently demonstrated to have significant reliability. TMS studies were undertaken on 35 healthy controls, using either a 90 mm circular and 70 mm figure of eight coil, and one of two targets (0.2 and 1.0 mV) tracked. The motor evoked potential (MEP) responses were recorded from the abductor pollicis brevis. SICF was consistently evident between interstimulus intervals (ISI) of 1–5 ms (P < 0.001), with two peaks occurring ISIs 1.5 and 3 ms when using the circular coil. A significant SICF reduction (F = 5.631, P < 0.05) was evident with the higher tracking target, while SICF increased when stimulating with the figure of eight coil. While there was a correlation between SICF and CSP duration, there was no relationship between SICF and SICI or ICF. Age appeared to have no influence on SICF, SICI, or ICF. Findings from the present work suggest that SICF appears to be mediated by I-wave facilitation

    TDP-43 proteinopathies: a new wave of neurodegenerative diseases.

    No full text
    Inclusions of pathogenic deposits containing TAR DNA-binding protein 43 (TDP-43) are evident in the brain and spinal cord of patients that present across a spectrum of neurodegenerative diseases. For instance, the majority of patients with sporadic amyotrophic lateral sclerosis (up to 97%) and a substantial proportion of patients with frontotemporal lobar degeneration (~45%) exhibit TDP-43 positive neuronal inclusions, suggesting a role for this protein in disease pathogenesis. In addition, TDP-43 inclusions are evident in familial ALS phenotypes linked to multiple gene mutations including the TDP-43 gene coding (TARDBP) and unrelated genes (eg, C9orf72). While TDP-43 is an essential RNA/DNA binding protein critical for RNA-related metabolism, determining the pathophysiological mechanisms through which TDP-43 mediates neurodegeneration appears complex, and unravelling these molecular processes seems critical for the development of effective therapies. This review highlights the key physiological functions of the TDP-43 protein, while considering an expanding spectrum of neurodegenerative diseases associated with pathogenic TDP-43 deposition, and dissecting key molecular pathways through which TDP-43 may mediate neurodegeneration.status: Published onlin

    Clinical manifestations of intermediate allele carriers in Huntington disease

    No full text
    Objective: There is controversy about the clinical consequences of intermediate alleles (IAs) in Huntington disease (HD). The main objective of this study was to establish the clinical manifestations of IA carriers for a prospective, international, European HD registry. Methods: We assessed a cohort of participants at risk with <36 CAG repeats of the huntingtin (HTT) gene. Outcome measures were the Unified Huntington's Disease Rating Scale (UHDRS) motor, cognitive, and behavior domains, Total Functional Capacity (TFC), and quality of life (Short Form-36 [SF-36]). This cohort was subdivided into IA carriers (27-35 CAG) and controls (<27 CAG) and younger vs older participants. IA carriers and controls were compared for sociodemographic, environmental, and outcome measures. We used regression analysis to estimate the association of age and CAG repeats on the UHDRS scores. Results: Of 12,190 participants, 657 (5.38%) with <36 CAG repeats were identified: 76 IA carriers (11.56%) and 581 controls (88.44%). After correcting for multiple comparisons, at baseline, we found no significant differences between IA carriers and controls for total UHDRS motor, SF-36, behavioral, cognitive, or TFC scores. However, older participants with IAs had higher chorea scores compared to controls (p 0.001). Linear regression analysis showed that aging was the most contributing factor to increased UHDRS motor scores (p 0.002). On the other hand, 1-year follow-up data analysis showed IA carriers had greater cognitive decline compared to controls (p 0.002). Conclusions: Although aging worsened the UHDRS scores independently of the genetic status, IAs might confer a late-onset abnormal motor and cognitive phenotype. These results might have important implications for genetic counseling. ClinicalTrials.gov identifier: NCT01590589

    The risk of COVID-19 death is much greater and age dependent with type I IFN autoantibodies

    No full text
    International audienceSignificance There is growing evidence that preexisting autoantibodies neutralizing type I interferons (IFNs) are strong determinants of life-threatening COVID-19 pneumonia. It is important to estimate their quantitative impact on COVID-19 mortality upon SARS-CoV-2 infection, by age and sex, as both the prevalence of these autoantibodies and the risk of COVID-19 death increase with age and are higher in men. Using an unvaccinated sample of 1,261 deceased patients and 34,159 individuals from the general population, we found that autoantibodies against type I IFNs strongly increased the SARS-CoV-2 infection fatality rate at all ages, in both men and women. Autoantibodies against type I IFNs are strong and common predictors of life-threatening COVID-19. Testing for these autoantibodies should be considered in the general population
    corecore