24 research outputs found

    Analyzing phenological synchronicity using volunteered geographic information

    Get PDF

    Reasoning over the Air: A Reasoning-based Implicit Semantic-Aware Communication Framework

    Full text link
    Semantic-aware communication is a novel paradigm that draws inspiration from human communication focusing on the delivery of the meaning of messages. It has attracted significant interest recently due to its potential to improve the efficiency and reliability of communication and enhance users' QoE. Most existing works focus on transmitting and delivering the explicit semantic meaning that can be directly identified from the source signal. This paper investigates the implicit semantic-aware communication in which the hidden information that cannot be directly observed from the source signal must be recognized and interpreted by the intended users. To this end, a novel implicit semantic-aware communication (iSAC) architecture is proposed for representing, communicating, and interpreting the implicit semantic meaning between source and destination users. A projection-based semantic encoder is proposed to convert the high-dimensional graphical representation of explicit semantics into a low-dimensional semantic constellation space for efficient physical channel transmission. To enable the destination user to learn and imitate the implicit semantic reasoning process of source user, a generative adversarial imitation learning-based solution, called G-RML, is proposed. Different from existing communication solutions, the source user in G-RML does not focus only on sending as much of the useful messages as possible; but, instead, it tries to guide the destination user to learn a reasoning mechanism to map any observed explicit semantics to the corresponding implicit semantics that are most relevant to the semantic meaning. Compared to the existing solutions, our proposed G-RML requires much less communication and computational resources and scales well to the scenarios involving the communication of rich semantic meanings consisting of a large number of concepts and relations.Comment: accepted at IEEE Transactions on Wireless Communication

    Ultrareliable and Low-Latency Wireless Communication: Tail, Risk, and Scale

    No full text

    Ultrareliable and low-latency wireless communication:tail, risk, and scale

    No full text
    Abstract Ensuring ultrareliable and low-latency communication (URLLC) for 5G wireless networks and beyond is of capital importance and is currently receiving tremendous attention in academia and industry. At its core, URLLC mandates a departure from expected utility-based network design approaches, in which relying on average quantities (e.g., average throughput, average delay, and average response time) is no longer an option but a necessity. Instead, a principled and scalable framework which takes into account delay, reliability, packet size, network architecture and topology (across access, edge, and core), and decision-making under uncertainty is sorely lacking. The overarching goal of this paper is a first step to filling this void. Towards this vision, after providing definitions of latency and reliability, we closely examine various enablers of URLLC and their inherent tradeoffs. Subsequently, we focus our attention on a wide variety of techniques and methodologies pertaining to the requirements of URLLC, as well as their applications through selected use cases. These results provide crisp insights for the design of low-latency and high-reliability wireless networks

    Fronthaul-Aware Software-Defined Wireless Networks: Resource Allocation and User Scheduling

    No full text
    Software-defined networking (SDN) provides an agile and programmable way to optimize radio access networks via a control-data plane separation. Nevertheless, reaping the benefits of wireless SDN hinges on making optimal use of the limited wireless fronthaul capacity. In this work, the problem of fronthaul-aware resource allocation and user scheduling is studied. To this end, a two-timescale fronthaul-aware SDN control mechanism is proposed in which the controller maximizes the time-averaged network throughput by enforcing a coarse correlated equilibrium in the long timescale. Subsequently, leveraging the controller's recommendations, each base station schedules its users using Lyapunov stochastic optimization in the short timescale, i.e., at each time slot. Simulation results show that significant network throughput enhancements and up to 40% latency reduction are achieved with the aid of the SDN controller. Moreover, the gains are more pronounced for denser network deployments.Comment: Accepted in IEEE Transactions on Wireless Communication

    Context-Aware Small Cell Networks: How Social Metrics Improve Wireless Resource Allocation

    No full text
    In this paper, a novel approach for optimizing and managing resource allocation in wireless small cell networks (SCNs) with device-to-device (D2D) communication is proposed. The proposed approach allows to jointly exploit both the wireless and social context of wireless users for optimizing the overall allocation of resources and improving traffic offload in SCNs. This context-aware resource allocation problem is formulated as a matching game in which user equipments (UEs) and resource blocks (RBs) rank one another, based on utility functions that capture both wireless and social metrics. Due to social interrelations, this game is shown to belong to a class of matching games with peer effects. To solve this game, a novel, selforganizing algorithm is proposed, using which UEs and RBs can interact to decide on their desired allocation. The proposed algorithm is then proven to converge to a two-sided stable matching between UEs and RBs. The properties of the resulting stable outcome are then studied and assessed. Simulation results using real social data show that clustering of socially connected users allows to offload a substantially larger amount of traffic than the conventional context-unaware approach. These results show that exploiting social context has high practical relevance in saving resources on the wireless links and on the backhaul.Comment: Submitted to the IEEE Transaction on Wireless Communication
    corecore