585 research outputs found

    Solving generic nonarchimedean semidefinite programs using stochastic game algorithms

    Full text link
    A general issue in computational optimization is to develop combinatorial algorithms for semidefinite programming. We address this issue when the base field is nonarchimedean. We provide a solution for a class of semidefinite feasibility problems given by generic matrices. Our approach is based on tropical geometry. It relies on tropical spectrahedra, which are defined as the images by the valuation of nonarchimedean spectrahedra. We establish a correspondence between generic tropical spectrahedra and zero-sum stochastic games with perfect information. The latter have been well studied in algorithmic game theory. This allows us to solve nonarchimedean semidefinite feasibility problems using algorithms for stochastic games. These algorithms are of a combinatorial nature and work for large instances.Comment: v1: 25 pages, 4 figures; v2: 27 pages, 4 figures, minor revisions + benchmarks added; v3: 30 pages, 6 figures, generalization to non-Metzler sign patterns + some results have been replaced by references to the companion work arXiv:1610.0674

    Computing the Least-core and Nucleolus for Threshold Cardinality Matching Games

    Full text link
    Cooperative games provide a framework for fair and stable profit allocation in multi-agent systems. \emph{Core}, \emph{least-core} and \emph{nucleolus} are such solution concepts that characterize stability of cooperation. In this paper, we study the algorithmic issues on the least-core and nucleolus of threshold cardinality matching games (TCMG). A TCMG is defined on a graph G=(V,E)G=(V,E) and a threshold TT, in which the player set is VV and the profit of a coalition SVS\subseteq V is 1 if the size of a maximum matching in G[S]G[S] meets or exceeds TT, and 0 otherwise. We first show that for a TCMG, the problems of computing least-core value, finding and verifying least-core payoff are all polynomial time solvable. We also provide a general characterization of the least core for a large class of TCMG. Next, based on Gallai-Edmonds Decomposition in matching theory, we give a concise formulation of the nucleolus for a typical case of TCMG which the threshold TT equals 11. When the threshold TT is relevant to the input size, we prove that the nucleolus can be obtained in polynomial time in bipartite graphs and graphs with a perfect matching

    The parameterized complexity of some geometric problems in unbounded dimension

    Full text link
    We study the parameterized complexity of the following fundamental geometric problems with respect to the dimension dd: i) Given nn points in \Rd, compute their minimum enclosing cylinder. ii) Given two nn-point sets in \Rd, decide whether they can be separated by two hyperplanes. iii) Given a system of nn linear inequalities with dd variables, find a maximum-size feasible subsystem. We show that (the decision versions of) all these problems are W[1]-hard when parameterized by the dimension dd. %and hence not solvable in O(f(d)nc){O}(f(d)n^c) time, for any computable function ff and constant cc %(unless FPT=W[1]). Our reductions also give a nΩ(d)n^{\Omega(d)}-time lower bound (under the Exponential Time Hypothesis)

    Node-balancing by edge-increments

    Get PDF
    Suppose you are given a graph G=(V,E)G=(V,E) with a weight assignment w:VZw:V\rightarrow\mathbb{Z} and that your objective is to modify ww using legal steps such that all vertices will have the same weight, where in each legal step you are allowed to choose an edge and increment the weights of its end points by 11. In this paper we study several variants of this problem for graphs and hypergraphs. On the combinatorial side we show connections with fundamental results from matching theory such as Hall's Theorem and Tutte's Theorem. On the algorithmic side we study the computational complexity of associated decision problems. Our main results are a characterization of the graphs for which any initial assignment can be balanced by edge-increments and a strongly polynomial-time algorithm that computes a balancing sequence of increments if one exists.Comment: 10 page

    Online unit clustering in higher dimensions

    Full text link
    We revisit the online Unit Clustering and Unit Covering problems in higher dimensions: Given a set of nn points in a metric space, that arrive one by one, Unit Clustering asks to partition the points into the minimum number of clusters (subsets) of diameter at most one; while Unit Covering asks to cover all points by the minimum number of balls of unit radius. In this paper, we work in Rd\mathbb{R}^d using the LL_\infty norm. We show that the competitive ratio of any online algorithm (deterministic or randomized) for Unit Clustering must depend on the dimension dd. We also give a randomized online algorithm with competitive ratio O(d2)O(d^2) for Unit Clustering}of integer points (i.e., points in Zd\mathbb{Z}^d, dNd\in \mathbb{N}, under LL_{\infty} norm). We show that the competitive ratio of any deterministic online algorithm for Unit Covering is at least 2d2^d. This ratio is the best possible, as it can be attained by a simple deterministic algorithm that assigns points to a predefined set of unit cubes. We complement these results with some additional lower bounds for related problems in higher dimensions.Comment: 15 pages, 4 figures. A preliminary version appeared in the Proceedings of the 15th Workshop on Approximation and Online Algorithms (WAOA 2017

    A Compact Linear Programming Relaxation for Binary Sub-modular MRF

    Full text link
    We propose a novel compact linear programming (LP) relaxation for binary sub-modular MRF in the context of object segmentation. Our model is obtained by linearizing an l1+l_1^+-norm derived from the quadratic programming (QP) form of the MRF energy. The resultant LP model contains significantly fewer variables and constraints compared to the conventional LP relaxation of the MRF energy. In addition, unlike QP which can produce ambiguous labels, our model can be viewed as a quasi-total-variation minimization problem, and it can therefore preserve the discontinuities in the labels. We further establish a relaxation bound between our LP model and the conventional LP model. In the experiments, we demonstrate our method for the task of interactive object segmentation. Our LP model outperforms QP when converting the continuous labels to binary labels using different threshold values on the entire Oxford interactive segmentation dataset. The computational complexity of our LP is of the same order as that of the QP, and it is significantly lower than the conventional LP relaxation

    Deaf, Dumb, and Chatting Robots, Enabling Distributed Computation and Fault-Tolerance Among Stigmergic Robot

    Get PDF
    We investigate ways for the exchange of information (explicit communication) among deaf and dumb mobile robots scattered in the plane. We introduce the use of movement-signals (analogously to flight signals and bees waggle) as a mean to transfer messages, enabling the use of distributed algorithms among the robots. We propose one-to-one deterministic movement protocols that implement explicit communication. We first present protocols for synchronous robots. We begin with a very simple coding protocol for two robots. Based on on this protocol, we provide one-to-one communication for any system of n \geq 2 robots equipped with observable IDs that agree on a common direction (sense of direction). We then propose two solutions enabling one-to-one communication among anonymous robots. Since the robots are devoid of observable IDs, both protocols build recognition mechanisms using the (weak) capabilities offered to the robots. The first protocol assumes that the robots agree on a common direction and a common handedness (chirality), while the second protocol assumes chirality only. Next, we show how the movements of robots can provide implicit acknowledgments in asynchronous systems. We use this result to design asynchronous one-to-one communication with two robots only. Finally, we combine this solution with the schemes developed in synchronous settings to fit the general case of asynchronous one-to-one communication among any number of robots. Our protocols enable the use of distributing algorithms based on message exchanges among swarms of Stigmergic robots. Furthermore, they provides robots equipped with means of communication to overcome faults of their communication device

    Improving Strategies via SMT Solving

    Full text link
    We consider the problem of computing numerical invariants of programs by abstract interpretation. Our method eschews two traditional sources of imprecision: (i) the use of widening operators for enforcing convergence within a finite number of iterations (ii) the use of merge operations (often, convex hulls) at the merge points of the control flow graph. It instead computes the least inductive invariant expressible in the domain at a restricted set of program points, and analyzes the rest of the code en bloc. We emphasize that we compute this inductive invariant precisely. For that we extend the strategy improvement algorithm of [Gawlitza and Seidl, 2007]. If we applied their method directly, we would have to solve an exponentially sized system of abstract semantic equations, resulting in memory exhaustion. Instead, we keep the system implicit and discover strategy improvements using SAT modulo real linear arithmetic (SMT). For evaluating strategies we use linear programming. Our algorithm has low polynomial space complexity and performs for contrived examples in the worst case exponentially many strategy improvement steps; this is unsurprising, since we show that the associated abstract reachability problem is Pi-p-2-complete

    Probabilistic Algorithmic Knowledge

    Full text link
    The framework of algorithmic knowledge assumes that agents use deterministic knowledge algorithms to compute the facts they explicitly know. We extend the framework to allow for randomized knowledge algorithms. We then characterize the information provided by a randomized knowledge algorithm when its answers have some probability of being incorrect. We formalize this information in terms of evidence; a randomized knowledge algorithm returning ``Yes'' to a query about a fact \phi provides evidence for \phi being true. Finally, we discuss the extent to which this evidence can be used as a basis for decisions.Comment: 26 pages. A preliminary version appeared in Proc. 9th Conference on Theoretical Aspects of Rationality and Knowledge (TARK'03
    corecore