47 research outputs found

    Equation of State Based Slip Spring Model for Entangled Polymer Dynamics

    Full text link
    A mesoscopic, mixed particle- and field-based Brownian dynamics methodology for the simulation of entangled polymer melts has been developed. Polymeric beads consist of several Kuhn segments, and their motion is dictated by the Helmholtz energy of the sample, which is a sum of the entropic elasticity of chain strands between beads, slip springs, and nonbonded interactions. The entanglement effect is introduced by the slip springs, which are springs connecting either nonsuccessive beads on the same chain or beads on different polymer chains. The terminal positions of slip springs are altered during the simulation through a kinetic Monte Carlo hopping scheme, with rate-controlled creation/destruction processes for the slip springs at chain ends. The rate constants are consistent with the free energy function employed and satisfy microscopic reversibility at equilibrium. The free energy of nonbonded interactions is derived from an appropriate equation of state, and it is computed as a functional of the local density by passing an orthogonal grid through the simulation box; accounting for it is necessary for reproducing the correct compressibility of the polymeric material. Parameters invoked by the mesoscopic model are derived from experimental volumetric and viscosity data or from atomistic molecular dynamics simulations, establishing a "bottom-up" predictive framework for conducting slip spring simulations of polymeric systems of specific chemistry. The mesoscopic simulation methodology is implemented for the case of cis-1,4-polyisoprene, whose structure, dynamics, thermodynamics, and linear rheology in the melt state are quantitatively predicted and validated without a posteriori fitting the results to experimental measurements.Comment: 80 pages, 17 figure

    Mesoscopic simulations of crosslinked polymer networks

    Get PDF
    Institut fĆ¼r Theoretische Physik, Georg-August UniversitƤt, Gƶttingen, Germany E-mail: [email protected] Abstract. A new methodology and the corresponding C++ code for mesoscopic simulations of elastomers are presented. The test system, crosslinked cis-1,4-polyisoprene, is simulated with a Brownian Dynamics/kinetic Monte Carlo algorithm as a dense liquid of soft, coarse-grained beads, each representing 5-10 Kuhn segments. From the thermodynamic point of view, the system is described by a Helmholtz free-energy containing contributions from entropic springs between successive beads along a chain, slip-springs representing entanglements between beads on different chains, and non-bonded interactions. The methodology is employed for the calculation of the stress relaxation function from simulations of several microseconds at equilibrium, as well as for the prediction of stress-strain curves of crosslinked polymer networks under deformation. Introduction Atomistic and mesoscopic simulations are widely employed for the study of polymer systems, since they provide insights that are complementary to the information derived from experiments. Although the full-atom or united-atom representations provide an accurate description of polymers, their long relaxation time constitutes a severe obstacle to such approaches, and thus the development of mesoscopic (or coarse-grained) models is needed to cover longer time and length scales. One of the main characteristics of polymer melts and polymer networks is the entanglement effect, arising due to the uncrossability of polymer chains, which gives rise to complicated topological constraints [1]-[4]. The tube model, which considers a single chain in a mean field, is one of the most significant models for the description of entangled polymer

    Exploring the interactions of irbesartan and irbesartanā€“2-hydroxypropyl-Ī²-cyclodextrin complex with model membranes

    Get PDF
    The interactions of irbesartan (IRB) and irbesartanā€“2-hydroxypropyl-Ī²-cyclodextrin (HP-Ī²-CD) complex with Dipalmitoyl Phosphatidylcholine (DPPC) bilayers have been explored utilizing an array of biophysical techniques ranging from Differential Scanning Calorimetry (DSC), Small angle X-ray Scattering (SAXS), ESI Mass-Spectrometry (ESI-MS) and solid state Nuclear Magnetic Resonance (ssNMR). Molecular Dynamics (MD) calculations have been also conducted to complement the experimental results. Irbesartan was found to be embedded in the lipid membrane core and to affect the phase transition properties of the DPPC bilayers. SAXS studies revealed that irbesartan alone does not display perfect solvation since some coexisting irbesartan crystallites are present. In its complexed form IRB gets fully solvated in the membranes showing that encapsulation of IRB in HP-Ī²-CD may have beneficial effects in the ADME properties of this drug. MD experiments revealed the topological and orientational integration of irbesartan into the phospholipid bilayer being placed at about 1 nm from the membrane centre

    Comparative study of the AT1 receptor prodrug antagonist candesartan cilexetil with other sartans on the interactions with membrane bilayers

    Get PDF
    AbstractDrugā€“membrane interactions of the candesartan cilexetil (TCV-116) have been studied on molecular basis by applying various complementary biophysical techniques namely differential scanning calorimetry (DSC), Raman spectroscopy, small and wide angle X-ray scattering (SAXS and WAXS), solution 1H and 13C nuclear magnetic resonance (NMR) and solid state 13C and 31P (NMR) spectroscopies. In addition, 31P cross polarization (CP) NMR broadline fitting methodology in combination with ab initio computations has been applied. Finally molecular dynamics (MD) was applied to find the low energy conformation and position of candesartan cilexetil in the bilayers. Thus, the experimental results complemented with in silico MD results provided information on the localization, orientation, and dynamic properties of TCV-116 in the lipidic environment. The effects of this prodrug have been compared with other AT1 receptor antagonists hitherto studied. The prodrug TCV-116 as other sartans has been found to be accommodated in the polar/apolar interface of the bilayer. In particular, it anchors in the mesophase region of the lipid bilayers with the tetrazole group oriented toward the polar headgroup spanning from water interface toward the mesophase and upper segment of the hydrophobic region. In spite of their localization identity, their thermal and dynamic effects are distinct pointing out that each sartan has its own fingerprint of action in the membrane bilayer, which is determined by the parameters derived from the above mentioned biophysical techniques

    Rational design, efficient syntheses and biological evaluation of N,Nā€²-symmetrically bis-substituted butylimidazole analogs as a new class of potent Angiotensin II receptor blockers

    Get PDF
    A series of symmetrically bis-substituted imidazole analogs bearing at the N-1 and N-3 two biphenyl moieties ortho substituted either with tetrazole or carboxylate functional groups was designed based on docking studies and utilizing for the first time an extra hydrophobic binding cleft of AT1 receptor. The synthesized analogs were evaluated for their in vitro antagonistic activities (pA2 values) and binding affinities (ā€“logIC50 values) to the Angiotensin II AT1 receptor. Among them, the potassium (ā€“logIC50 = 9.04) and the sodium (ā€“logIC50 = 8.54) salts of 4-butyl-N,Nā€²-bis{[2ā€²-(2H-tetrazol-5-yl)biphenyl-4-yl]methyl}imidazolium bromide (12a and 12b, respectively) as well as its free acid 11 (ā€“logIC50 = 9.46) and the 4-butyl-2-hydroxymethyl-N,Nā€²-bis{[2ā€²-(2H-tetrazol-5-yl)biphenyl-4-yl]methyl}imidazolium bromide (14) (ā€“logIC50 = 8.37, pA2 = 8.58) showed high binding affinity to the AT1 receptor and high antagonistic activity (potency). The potency was similar or even superior to that of Losartan (ā€“logIC50 = 8.25, pA2 = 8.25). On the contrary, 2-butyl-N,Nā€²-bis{[2ā€²-[2H-tetrazol-5-yl)]biphenyl-4-yl]methyl}imidazolium bromide (27) (ā€“logIC50 = 5.77) and 2-butyl-4-chloro-5-hydroxymethyl-N,Nā€²-bis{[2ā€²-[2H-tetrazol-5-yl)]biphenyl-4-yl]methyl}imidazolium bromide (30) (ā€“logIC50 = 6.38) displayed very low binding affinity indicating that the orientation of the n-butyl group is of primary importance. Docking studies of the representative highly active 12b clearly showed that this molecule has an extra hydrophobic binding feature compared to prototype drug Losartan and it fits to the extra hydrophobic cavity. These results may contribute to the discovery and development of a new class of biologically active molecules through bis-alkylation of the imidazole ring by a convenient and cost effective synthetic strategy

    Equation of state based slip spring model for entangled polymer dynamics

    Get PDF
    A mesoscopic, mixed particle- and field-based Brownian dynamics methodology for the simulation of entangled polymer melts has been developed. Polymeric beads consist of several Kuhn segments, and their motion is dictated by the Helmholtz energy of the sample, which is a sum of the entropic elasticity of chain strands between beads, slip springs, and nonbonded interactions. Following earlier works in the field [Phys. Rev. Lett. 2012, 109, 148302], the entanglement effect is introduced by the slip springs, which are springs connecting either nonsuccessive beads on the same chain or beads on different polymer chains. The terminal positions of slip springs are altered during the simulation through a kinetic Monte Carlo hopping scheme, with rate-controlled creation/destruction processes for the slip springs at chain ends. The rate constants are consistent with the free energy function employed and satisfy microscopic reversibility at equilibrium. The free energy of nonbonded interactions is derived from an appropriate equation of state, and it is computed as a functional of the local density by passing an orthogonal grid through the simulation box; accounting for it is necessary for reproducing the correct compressibility of the polymeric material. Parameters invoked by the mesoscopic model are derived from experimental volumetric and viscosity data or from atomistic molecular dynamics simulations, establishing a ā€œbottom-upā€ predictive framework for conducting slip spring simulations of polymeric systems of specific chemistry. Initial configurations for the mesoscopic simulations are obtained by further coarse-graining of well-equilibrated structures represented at a greater level of detail. The mesoscopic simulation methodology is implemented for the case of cis-1,4-polyisoprene, whose structure, dynamics, thermodynamics, and linear rheology in the melt state are quantitatively predicted and validated without a posteriori fitting the results to experimental measurements

    Molecular simulations of fluoxetine in hydrated lipid bilayers, as well as in aqueous solutions containing Ī²-cyclodextrin

    No full text
    Fluoxetine, which is a well-known antidepressant drug, is studied in hydrated cholesterol-free and cholesterol-containing lipid bilayers through unbiased and biased atomistic molecular dynamics simulations. The latter are conducted for the calculation of the potential of mean force (PMF) of fluoxetine along an axis perpendicular to the two leaflets of the bilayer. The PMF indicates that the drug prefers to reside inside the lipid phase and allows us to calculate important thermodynamic properties, such as the Gibbs energy difference of partitioning from the water to the lipid phase and the Gibbs energy barrier for hopping events between the two leaflets of the bilayer. The results from the biased simulations are in accord with the mass density profiles calculated from the unbiased simulations. Moreover, we estimate the effect of fluoxetine mole fraction on the order parameters of the lipid alkyl chains and on the area per lipid. It is also found that fluoxetine forms a hydrogen bond network with lipids and water molecules penetrating into the lipid phase. In addition, fluoxoetine is studied in detail in aqueous solutions containing Ī²-cyclodextrin. It is observed from unbiased molecular dynamics simulations that the two aforementioned molecules form a noncovalent complex spontaneously and the calculated binding free energy is in agreement with the literature. Ā© 2022 Elsevier Inc

    Atomistic Simulation Studies on the Dynamics and Thermodynamics of Nonpolar Molecules within the Zeolite Imidazolate Framework-8

    No full text
    Pantatosaki, Evangelia Pazzona, Federico G. Megariotis, Gregory Papadopoulos, George K.Statistical-mechanics-based simulation studies at the atomistic level of argon (Ar), methane (CH4), and hydrogen (H-2) sorbed in the zeolite imidazolate framework-8 (ZIF-8) are reported. ZIF-8 is a product of a special kind of chemical process, recently termed as reticular synthesis, which has generated a class of materials of critical importance as molecular binders. In this work, we explore the mechanisms that govern the sorption thermodynamics and kinetics of nonpolar sorbates possessing different sizes and strength of interactions with the metal-organic framework to understand the outstanding properties of this novel class of sorbents, as revealed by experiments published elsewhere. For this purpose, we have developed an in-house modeling procedure involving calculations of sorption isotherms, partial internal energies, various probability density functions, and molecular dynamics for the simulation of the sorbed phase over a wide range of occupancies and temperatures within a digitally reconstructed unit cell of ZIF-8. The results showed that sorbates perceive a marked energetic inhomogeneity within the atomic framework of the metal-organic material under study, resulting in free energy barriers that give rise to inflections in the sorption isotherms and guide the dynamics of guest molecules
    corecore